#! /usr/bin/env python # def clement1 ( n ): #*****************************************************************************80 # ## CLEMENT1 returns the CLEMENT1 matrix. # # Formula: # # if ( J = I+1 ) # A(I,J) = sqrt(I*(N-I)) # else if ( I = J+1 ) # A(I,J) = sqrt(J*(N-J)) # else # A(I,J) = 0 # # Example: # # N = 5 # # . sqrt(4) . . . # sqrt(4) . sqrt(6) . . # . sqrt(6) . sqrt(6) . # . . sqrt(6) . sqrt(4) # . . . sqrt(4) . # # Properties: # # A is tridiagonal. # # A is banded, with bandwidth 3. # # Because A is tridiagonal, it has property A (bipartite). # # A is symmetric: A' = A. # # Because A is symmetric, it is normal. # # Because A is normal, it is diagonalizable. # # A is persymmetric: A(I,J) = A(N+1-J,N+1-I). # # The diagonal of A is zero. # # A is singular if N is odd. # # About 64 percent of the entries of the inverse of A are zero. # # The eigenvalues are plus and minus the numbers # # N-1, N-3, N-5, ..., (1 or 0). # # If N is even, # # det ( A ) = (-1)**(N/2) * (N-1) * (N+1)**(N/2) # # and if N is odd, # # det ( A ) = 0 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 December 2014 # # Author: # # John Burkardt # # Reference: # # Paul Clement, # A class of triple-diagonal matrices for test purposes, # SIAM Review, # Volume 1, 1959, pages 50-52. # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # from math import sqrt import numpy as np a = np.zeros ( [ n, n ] ) for i in range ( 0, n ): for j in range ( 0, n ): if ( j == i + 1 ): a[i,j] = sqrt ( ( i + 1 ) * ( n - i - 1 ) ) elif ( i == j + 1 ): a[i,j] = sqrt ( ( j + 1 ) * ( n - j - 1 ) ) else: a[i,j] = 0.0 return a def clement1_determinant ( n ): #*****************************************************************************80 # ## CLEMENT1_DETERMINANT computes the determinant of the CLEMENT1 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 December 2014 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real DETERM, the determinant. # if ( ( n % 2 ) == 1 ): determ = 0.0 else: determ = 1.0 for i in range ( 1, n, 2 ): determ = determ * ( i ) * ( n - i ) if ( ( n // 2 ) % 2 == 1 ): determ = - determ return determ def clement1_inverse ( n ): #*****************************************************************************80 # ## CLEMENT1_INVERSE returns the inverse of the CLEMENT1 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. N must not be odd% # # Output, real A(N,N), the matrix. # import numpy as np from sys import exit if ( ( n % 2 ) == 1 ): print '' print 'CLEMENT1_INVERSE - Fatal error!' print ' The Clement matrix is singular for odd N.' exit ( 'CLEMENT1_INVERSE - Fatal error!' ) a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): if ( ( i % 2 ) == 0 ): for j in range ( i, n - 1, 2 ): if ( j == i ): prod = 1.0 / np.sqrt ( float ( ( j + 1 ) * ( n - j - 1 ) ) ) else: prod = - prod \ * np.sqrt ( float ( ( j ) * ( n - j ) ) ) \ / np.sqrt ( float ( ( j + 1 ) * ( n - j - 1 ) ) ) a[i,j+1] = prod a[j+1,i] = prod return a def clement1_determinant_test ( ): #*****************************************************************************80 # ## CLEMENT1_DETERMINANT_TEST tests CLEMENT1_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 December 2014 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'CLEMENT1_DETERMINANT_TEST' print ' CLEMENT1_DETERMINANT computes the CLEMENT1 determinant.' m = 4 n = 4 a = clement1 ( n ) r8mat_print ( m, n, a, ' CLEMENT1 matrix:' ) value = clement1_determinant ( n ) print ' Value = %g' % ( value ) print '' print 'CLEMENT1_DETERMINANT_TEST' print ' Normal end of execution.' return def clement1_test ( ): #*****************************************************************************80 # ## CLEMENT1_TEST tests CLEMENT1. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 December 2014 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'CLEMENT1_TEST' print ' CLEMENT1 computes the CLEMENT1 matrix.' m = 4 n = m a = clement1 ( n ) r8mat_print ( n, n, a, ' CLEMENT1 matrix:' ) print '' print 'CLEMENT1_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) clement1_test ( ) timestamp ( )