#! /usr/bin/env python # def clement2 ( n, x, y ): #*****************************************************************************80 # ## CLEMENT2 returns the CLEMENT2 matrix. # # Formula: # # if ( J = I + 1 ) then # A(I,J) = X(I) # else if ( I = J + 1 ) then # A(I,J) = Y(J) # else # A(I,J) = 0 # # Example: # # N = 5, X and Y arbitrary: # # . X(1) . . . # Y(1) . X(2) . . # . Y(2) . X(3) . # . . Y(3) . X(4) # . . . Y(4) . # # N = 5, X=(1,2,3,4), Y=(5,6,7,8): # # . 1 . . . # 5 . 2 . . # . 6 . 3 . # . . 7 . 4 # . . . 8 . # # Properties: # # A is generally not symmetric: A' /= A. # # A is tridiagonal. # # Because A is tridiagonal, it has property A (bipartite). # # A is banded, with bandwidth 3. # # The diagonal of A is zero. # # A is singular if N is odd. # # About 64 percent of the entries of the inverse of A are zero. # # If N is even, # # det ( A ) = (-1)^(N/2) * product ( 1 <= I <= N/2 ) # ( X(2*I-1) * Y(2*I-1) ) # # and if N is odd, # # det ( A ) = 0. # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 December 2014 # # Author: # # John Burkardt # # Reference: # # Paul Clement, # A class of triple-diagonal matrices for test purposes, # SIAM Review, # Volume 1, 1959, pages 50-52. # # Alan Edelman, Eric Kostlan, # The road from Kac's matrix to Kac's random polynomials. # In Proceedings of the Fifth SIAM Conference on Applied Linear Algebra, # edited by John Lewis, # SIAM, 1994, # pages 503-507. # # Robert Gregory, David Karney, # Example 3.19, # A Collection of Matrices for Testing Computational Algorithms, # Wiley, New York, 1969, page 46, # LC: QA263.G68. # # Olga Taussky, John Todd, # Another look at a matrix of Mark Kac, # Linear Algebra and Applications, # Volume 150, 1991, pages 341-360. # # Parameters: # # Input, integer N, the order of A. # # Input, real X(N-1), Y(N-1), the first super and # subdiagonals of the matrix A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( [ n, n ] ) for i in range ( 0, n ): for j in range ( 0, n ): if ( j == i + 1 ): a[i,j] = x[i] elif ( i == j + 1 ): a[i,j] = y[j] else: a[i,j] = 0.0 return a def clement2_determinant ( n, x, y ): #*****************************************************************************80 # ## CLEMENT2_DETERMINANT computes the determinant of the CLEMENT2 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 December 2014 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Input, real X(N-1), Y(N-1), the first super and # subdiagonals of the matrix A. # # Output, real DETERM, the determinant. # if ( ( n % 2 ) == 1 ): determ = 0.0 else: determ = 1.0 for i in range ( 0, n - 1, 2 ): determ = determ * x[i] * y[i] if ( ( n // 2 ) % 2 == 1 ): determ = - determ return determ def clement2_determinant_test ( ): #*****************************************************************************80 # ## CLEMENT2_DETERMINANT_TEST tests CLEMENT2_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 December 2014 # # Author: # # John Burkardt # from clement2 import clement2 from r8mat_print import r8mat_print from r8vec_uniform_ab import r8vec_uniform_ab print '' print 'CLEMENT2_DETERMINANT_TEST' print ' CLEMENT2_DETERMINANT computes the CLEMENT2 determinant.' m = 4 n = m seed = 123456789 x, seed = r8vec_uniform_ab ( n-1, -5.0, +5.0, seed ) y, seed = r8vec_uniform_ab ( n-1, -5.0, +5.0, seed ) a = clement2 ( n, x, y ) r8mat_print ( m, n, a, ' CLEMENT2 matrix:' ) value = clement2_determinant ( n, x, y ) print ' Value = %g' % ( value ) print '' print 'CLEMENT2_DETERMINANT_TEST' print ' Normal end of execution.' return def clement2_inverse ( n, x, y ): #*****************************************************************************80 # ## CLEMENT2_INVERSE returns the inverse of the Clement3 matrix. # # Example: # # N = 6, X and Y arbitrary: # # 0 1/Y1 0 -X2/(Y1*Y3) 0 X2*X4/(Y1*Y3*Y5) # 1/X1 0 0 0 0 0 # 0 0 0 1/Y3 0 -X4/(Y3*Y5) # -Y2/(X1*X3) 0 1/X3 0 0 0 # 0 0 0 0 0 1/Y5 # Y2*Y4/(X1*X3*X5) 0 -Y4/(X3*X5) 0 1/X5 0 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 25 March 2015 # # Author: # # John Burkardt # # Reference: # # Paul Clement, # A class of triple-diagonal matrices for test purposes, # SIAM Review, # Volume 1, 1959, pages 50-52. # # Parameters: # # Input, integer N, the order of A. N must not be odd% # # Input, real X(N-1), Y(N-1), the first super and # subdiagonals of the matrix A. None of the entries # of X or Y may be zero. # # Output, real A(N,N), the matrix. # import numpy as np from sys import exit if ( ( n % 2 ) == 1 ): print '' print 'CLEMENT2_INVERSE - Fatal error!' print ' The Clement matrix is singular for odd N.' exit ( 'CLEMENT2_INVERSE - Fatal error!' ) for i in range ( 0, n - 1 ): if ( x[i] == 0.0 ): print '' print 'CLEMENT2_INVERSE - Fatal error!' print ' The matrix is singular' print ' X(I) = 0 for I = %d' % ( i ) exit ( 'CLEMENT2_INVERSE - Fatal error!' ) elif ( y[i] == 0.0 ): print '' print 'CLEMENT2_INVERSE - Fatal error!' print ' The matrix is singular' print ' Y(I) = 0 for I = %d' % ( i ) exit ( 'CLEMENT2_INVERSE - Fatal error!' ) a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): if ( ( i % 2 ) == 0 ): for j in range ( i, n - 1, 2 ): if ( j == i ): prod1 = 1.0 / y[j] prod2 = 1.0 / x[j] else: prod1 = - prod1 * x[j-1] / y[j] prod2 = - prod2 * y[j-1] / x[j] a[i,j+1] = prod1 a[j+1,i] = prod2 return a def clement2_test ( ): #*****************************************************************************80 # ## CLEMENT2_TEST tests CLEMENT2. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 December 2014 # # Author: # # John Burkardt # from r8mat_print import r8mat_print from r8vec_uniform_ab import r8vec_uniform_ab print '' print 'CLEMENT2_TEST' print ' CLEMENT2 computes the CLEMENT2 matrix.' m = 4 n = m seed = 123456789 x, seed = r8vec_uniform_ab ( n-1, -5.0, +5.0, seed ) y, seed = r8vec_uniform_ab ( n-1, -5.0, +5.0, seed ) a = clement2 ( n, x, y ) r8mat_print ( m, n, a, ' CLEMENT2 matrix:' ) print '' print 'CLEMENT2_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) clement2_test ( ) timestamp ( )