#! /usr/bin/env python # def colleague ( n, c ): #*****************************************************************************80 # ## COLLEAGUE returns the COLLEAGUE matrix. # # Discussion: # # The colleague matrix is an analog of the companion matrix, adapted # for use with polynomials represented by a sum of Chebyshev polynomials. # # Let the N-th degree polynomial be defined by # # P(X) = C(N)*T_N(X) + C(N-1)*T_(N-1)(X) + ... + C(1)*T1(X) + C(0)*T0(X) # # where T_I(X) is the I-th Chebyshev polynomial. # # Then the roots of P(X) are the eigenvalues of the colleague matrix A(C): # # 0 1 0 ... 0 0 0 0 ... 0 # 1/2 0 1/2 ... 0 0 0 0 ... 0 # 0 1/2 0 ... 0 - 1/(2*C(N)) * 0 0 0 ... 0 # ... ... ... ... ... ... ... ... ... ... # ... ... ... 0 1/2 ... ... ... ... 0 # ... ... ... 1/2 0 C(0) C(1) C(2) ... C(N-1) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 11 March 2015 # # Author: # # John Burkardt # # Reference: # # I J Good, # The Colleague Matrix: A Chebyshev Analogue of the Companion Matrix, # The Quarterly Journal of Mathematics, # Volume 12, Number 1, 1961, pages 61-68. # # Parameters: # # Input, integer N, the order of the matrix. # # Input, real C(0:N), the coefficients of the polynomial. # C(N) should not be zero# # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) if ( n == 1 ): a[0,0] = - c[0] / c[1] else: a[0,1] = 1.0; for i in range ( 1, n ): a[i,i-1] = 0.5 for i in range ( 1, n - 1 ): a[i,i+1] = 0.5 for j in range ( 0, n ): a[n-1,j] = a[n-1,j] - 0.5 * c[j] / c[n] return a def colleague_test ( ): #*****************************************************************************80 # ## COLLEAGUE_TEST tests COLLEAGUE. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 11 March 2015 # # Author: # # John Burkardt # from r8vec_uniform_ab import r8vec_uniform_ab from r8mat_print import r8mat_print print '' print 'COLLEAGUE_TEST' print ' COLLEAGUE computes the COLLEAGUE matrix.' m = 5 n = m r8_lo = -5.0 r8_hi = +5.0 seed = 123456789 c, seed = r8vec_uniform_ab ( n + 1, r8_lo, r8_hi, seed ) a = colleague ( n, c ) r8mat_print ( m, n, a, ' COLLEAGUE matrix:' ) print '' print 'COLLEAGUE_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) colleague_test ( ) timestamp ( )