#! /usr/bin/env python # def combin ( alpha, beta, n ): #*****************************************************************************80 # ## COMBIN returns the COMBIN matrix. # # Formula: # # If ( I = J ) then # A(I,J) = ALPHA + BETA # else # A(I,J) = BETA # # Example: # # N = 5, ALPHA = 2, BETA = 3 # # 5 3 3 3 3 # 3 5 3 3 3 # 3 3 5 3 3 # 3 3 3 5 3 # 3 3 3 3 5 # # Properties: # # A is symmetric: A' = A. # # Because A is symmetric, it is normal. # # Because A is normal, it is diagonalizable. # # A is persymmetric: A(I,J) = A(N+1-J,N+1-I). # # det ( A ) = ALPHA^(N-1) * ( ALPHA + N * BETA ). # # LAMBDA(1:N-1) = ALPHA, # LAMBDA(N) = ALPHA + N * BETA. # # The eigenvector associated with LAMBDA(N) is (1,1,1,...,1)/sqrt(N). # # The other N-1 eigenvectors are simply any (orthonormal) basis # for the space perpendicular to (1,1,1,...,1). # # A is nonsingular if ALPHA /= 0 and ALPHA + N * BETA /= 0. # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 October 2007 # # Author: # # John Burkardt # # Reference: # # Robert Gregory, David Karney, # Example 3.25, # A Collection of Matrices for Testing Computational Algorithms, # Wiley, New York, 1969, page 53, # LC: QA263.G68. # # Donald Knuth, # The Art of Computer Programming, # Volume 1, Fundamental Algorithms, Second Edition, # Addison-Wesley, Reading, Massachusetts, 1973, page 36. # # Parameters: # # Input, real ALPHA, BETA, scalars that define A. # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( [ n, n ] ) for j in range ( 0, n ): for i in range ( 0, n ): a[i,j] = beta a[j,j] = a[j,j] + alpha return a def combin_condition ( alpha, beta, n ): #*****************************************************************************80 # ## COMBIN_CONDITION returns the L1 condition of the COMBIN matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 December 2014 # # Author: # # John Burkardt # # Parameters: # # Input, real ALPHA, BETA, scalars that define A. # # Input, integer N, the order of the matrix. # # Output, real COND, the L1 condition. # a_norm = abs ( alpha + beta ) + ( n - 1 ) * abs ( beta ) b_norm_top = abs ( alpha + ( n - 1 ) * beta ) + ( n - 1 ) * abs ( beta ) b_norm_bot = abs ( alpha * ( alpha + n * beta ) ) b_norm = b_norm_top / b_norm_bot cond = a_norm * b_norm return cond def combin_condition_test ( ): #*****************************************************************************80 # ## COMBIN_CONDITION_TEST tests COMBIN_CONDITION. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 December 2014 # # Author: # # John Burkardt # from r8_uniform_01 import r8_uniform_01 from r8mat_print import r8mat_print print '' print 'COMBIN_CONDITION_TEST' print ' COMBIN_CONDITION computes the condition of the COMBIN matrix.' print '' seed = 123456789 n = 3 seed = 123456789 alpha, seed = r8_uniform_01 ( seed ) alpha = round ( 50.0 * alpha ) / 5.0 beta, seed = r8_uniform_01 ( seed ) beta = round ( 50.0 * beta ) / 5.0 a = combin ( alpha, beta, n ) r8mat_print ( n, n, a, ' COMBIN matrix:' ) value = combin_condition ( alpha, beta, n ) print '' print ' Value = %g' % ( value ) print '' print 'COMBIN_CONDITION_TEST' print ' Normal end of execution.' return def combin_determinant ( alpha, beta, n ): #*****************************************************************************80 # ## COMBIN_DETERMINANT computes the determinant of the COMBIN matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 December 2014 # # Author: # # John Burkardt # # Parameters: # # Input, real ALPHA, BETA, scalars that define the matrix. # # Input, integer N, the order of the matrix. # # Output, real DETERM, the determinant. # determ = alpha ** ( n - 1 ) * ( alpha + n * beta ) return determ def combin_determinant_test ( ): #*****************************************************************************80 # ## COMBIN_DETERMINANT_TEST tests COMBIN_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 December 2014 # # Author: # # John Burkardt # from r8_uniform_01 import r8_uniform_01 from r8mat_print import r8mat_print print '' print 'COMBIN_DETERMINANT_TEST' print ' COMBIN_DETERMINANT computes the COMBIN determinant.' m = 4 n = 4 seed = 123456789 alpha, seed = r8_uniform_01 ( seed ) alpha = round ( 50.0 * alpha ) / 5.0 beta, seed = r8_uniform_01 ( seed ) beta = round ( 50.0 * beta ) / 5.0 a = combin ( alpha, beta, n ) r8mat_print ( m, n, a, ' COMBIN matrix:' ) value = combin_determinant ( alpha, beta, n ) print ' Value = %g' % ( value ) print '' print 'COMBIN_DETERMINANT_TEST' print ' Normal end of execution.' return def combin_eigen_right ( alpha, beta, n ): #*****************************************************************************80 # ## COMBIN_EIGEN_RIGHT returns the right eigenvectors of the COMBIN matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real ALPHA, BETA, scalars that define A. # # Input, integer N, the order of the matrix. # # Output, real X(N,N), the right eigenvectors. # import numpy as np x = np.zeros ( ( n, n ) ) for j in range ( 0, n - 1 ): x[ 0,j] = +1.0 x[j+1,j] = -1.0 j = n - 1 for i in range ( 0, n ): x[i,j] = 1.0 return x def combin_eigenvalues ( alpha, beta, n ): #*****************************************************************************80 # ## COMBIN_EIGENVALUES returns the eigenvalues of the COMBIN matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real ALPHA, BETA, scalars that define A. # # Input, integer N, the order of A. # # Output, real LAM(N), the eigenvalues. # import numpy as np lam = np.zeros ( n ) for i in range ( 0, n - 1 ): lam[i] = alpha lam[n-1] = alpha + n * beta return lam def combin_inverse ( alpha, beta, n ): #*****************************************************************************80 # ## COMBIN_INVERSE returns the inverse of the combinatorial matrix A. # # Formula: # # if ( I = J ) # A(I,J) = (ALPHA+(N-1)*BETA) / (ALPHA*(ALPHA+N*BETA)) # else # A(I,J) = - BETA / (ALPHA*(ALPHA+N*BETA)) # # Example: # # N = 5, ALPHA = 2, BETA = 3 # # 14 -3 -3 -3 -3 # -3 14 -3 -3 -3 # 1/34 * -3 -3 14 -3 -3 # -3 -3 -3 14 -3 # -3 -3 -3 -3 14 # # Properties: # # A is symmetric: A' = A. # # Because A is symmetric, it is normal. # # Because A is normal, it is diagonalizable. # # A is persymmetric: A(I,J) = A(N+1-J,N+1-I). # # A is Toeplitz: constant along diagonals. # # det ( A ) = 1 / (ALPHA^(N-1) * (ALPHA+N*BETA)). # # A is well defined if ALPHA /= 0.0 and ALPHA+N*BETA /= 0. # # A is also a combinatorial matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 March 2015 # # Author: # # John Burkardt # # Reference: # # Donald Knuth, # The Art of Computer Programming, # Volume 1, Fundamental Algorithms, Second Edition, # Addison-Wesley, Reading, Massachusetts, 1973, page 36. # # Parameters: # # Input, real ALPHA, BETA, scalars that define the matrix. # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np from sys import exit a = np.zeros ( ( n, n ) ) if ( alpha == 0.0 ): print '' print 'COMBIN_INVERSE - Fatal error!' print ' The entries of the matrix are undefined' print ' because ALPHA = 0.' exit ( 'COMBIN_INVERSE - Fatal error!' ) elif ( alpha + n * beta == 0.0 ): print '' print 'COMBIN_INVERSE - Fatal error!' print ' The entries of the matrix are undefined' print ' because ALPHA+N*BETA is zero.' exit ( 'COMBIN_INVERSE - Fatal error!' ) bot = alpha * ( alpha + n * beta ) for i in range ( 0, n ): for j in range ( 0, n ): if ( i == j ): a[i,j] = ( alpha + float ( n - 1 ) * beta ) / bot else: a[i,j] = - beta / bot return a def combin_test ( ): #*****************************************************************************80 # ## COMBIN_TEST tests COMBIN. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 December 2014 # # Author: # # John Burkardt # from r8_uniform_01 import r8_uniform_01 from r8mat_print import r8mat_print print '' print 'COMBIN_TEST' print ' COMBIN computes the COMBIN matrix.' n = 4 seed = 123456789 alpha, seed = r8_uniform_01 ( seed ) alpha = round ( 50.0 * alpha ) / 5.0 beta, seed = r8_uniform_01 ( seed ) beta = round ( 50.0 * beta ) / 5.0 a = combin ( alpha, beta, n ) r8mat_print ( n, n, a, ' COMBIN matrix:' ) print '' print 'COMBIN_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) combin_test ( ) timestamp ( )