#! /usr/bin/env python # def companion ( n, x ): #*****************************************************************************80 # ## COMPANION returns the companion matrix A for a monic polynomial. # # Formula: # # Let the monic N-th degree polynomial be defined by # # P(t) = t^N + X(N)*t^(N-1) + X(N-1)*t^(N-2) + ... + X(2)*t + X(1) # # Then # # A(1,J) = X(N+1-J) for J=1 to N # A(I,I-1) = 1 for I=2 to N # A(I,J) = 0 otherwise # # A is called the companion matrix of the polynomial P(t), and the # characteristic equation of A is P(t) = 0. # # Matrices of this form are also called Frobenius matrices. # # The determinant of a matrix is unaffected by being transposed, # and only possibly changes sign if the rows are "reflected", so # there are actually many possible ways to write a companion matrix: # # A B C D A 1 0 0 0 1 0 0 0 0 1 0 0 0 1 A # 1 0 0 0 B 0 1 0 0 0 1 0 0 1 0 0 0 1 0 B # 0 1 0 0 C 0 0 1 0 0 0 1 1 0 0 0 1 0 0 C # 0 0 1 0 D 0 0 0 D C B A A B C D 0 0 0 D # # Example: # # N = 5, X = ( 1, 2, 3, 4, 5 ) # # 5 4 3 2 1 # 1 0 0 0 0 # 0 1 0 0 0 # 0 0 1 0 0 # 0 0 0 1 0 # # Properties: # # A is generally not symmetric: A' /= A. # # A is nonsingular if and only if X(1) is nonzero. # # The eigenvalues of A are the roots of P(t) = 0. # # If LAMBDA is an eigenvalue of A, then a corresponding eigenvector is # ( 1, LAMBDA, LAMBDA^2, ..., LAMBDA^(N-1) ). # # If LAMBDA is an eigenvalue of multiplicity 2, then a second # corresponding generalized eigenvector is # # ( 0, 1, 2 * LAMBDA, ..., (N-1)*LAMBDA^(N-2) ). # # For higher multiplicities, repeatedly differentiate with respect to LAMBDA. # # Any matrix with characteristic polynomial P(t) is similar to A. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 09 January 2015 # # Author: # # John Burkardt # # Reference: # # Gene Golub, Charles Van Loan, # Matrix Computations, second edition, # Johns Hopkins University Press, Baltimore, Maryland, 1989, # section 7.4.6. # # Charles Kenney, Alan Laub, # Controllability and stability radii for companion form systems, # Math. Control Signals Systems, 1 (1988), pages 239-256. # (Gives explicit formulas for the singular values.) # # James Wilkinson, # The Algebraic Eigenvalue Problem, # Oxford University Press, # 1965, page 12. # # Parameters: # # Input, integer N, the order of A. # # Input, real X(N), the coefficients of the polynomial # which define A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( [ n, n ] ) for j in range ( 0, n ): for i in range ( 0, n ): if ( i == 0 ): a[i,j] = x[n-1-j] elif ( i == j + 1 ): a[i,j] = 1.0 else: a[i,j] = 0.0 return a def companion_condition ( n, x ): #*****************************************************************************80 # ## COMPANION_CONDITION computes the L1 condition of the COMPANION matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Input, real X(N), the polynomial coefficients. # # Output, real VALUE, the L1 condition. # a_norm = abs ( x[0] ) for i in range ( 1, n ): a_norm = max ( a_norm, 1.0 + abs ( x[i] ) ) b_norm = 1.0 / abs ( x[0] ) for i in range ( 1, n ): b_norm = max ( b_norm, 1.0 + abs ( x[i] ) / abs ( x[0] ) ) value = a_norm * b_norm return value def companion_condition_test ( ): #*****************************************************************************80 # ## COMPANION_CONDITION_TEST tests COMPANION_CONDITION. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 January 2015 # # Author: # # John Burkardt # from r8vec_uniform_ab import r8vec_uniform_ab from r8mat_print import r8mat_print print '' print 'COMPANION_CONDITION_TEST' print ' COMPANION_CONDITION computes the COMPANION condition.' n = 5 x_lo = -5.0 x_hi = +5.0 seed = 123456789 x, seed = r8vec_uniform_ab ( n, x_lo, x_hi, seed ) a = companion ( n, x ) m = n r8mat_print ( m, n, a, ' COMPANION matrix:' ) value = companion_condition ( n, x ) print ' Value = %g' % ( value ) print '' print 'COMPANION_CONDITION_TEST' print ' Normal end of execution.' return def companion_determinant ( n, x ): #*****************************************************************************80 # ## COMPANION_DETERMINANT computes the determinant of the COMPANION matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 09 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Input, real X(N), the polynomial coefficients. # # Output, real DETERM, the determinant. # if ( ( n % 2 ) == 1 ): determ = + x[0] else: determ = - x[0] return determ def companion_determinant_test ( ): #*****************************************************************************80 # ## COMPANION_DETERMINANT_TEST tests COMPANION_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 09 January 2015 # # Author: # # John Burkardt # from r8vec_uniform_ab import r8vec_uniform_ab from r8mat_print import r8mat_print print '' print 'COMPANION_DETERMINANT_TEST' print ' COMPANION_DETERMINANT computes the COMPANION determinant.' n = 5 r8_lo = -5.0 r8_hi = +5.0 seed = 123456789 x, seed = r8vec_uniform_ab ( n, r8_lo, r8_hi, seed ) a = companion ( n, x ) m = n r8mat_print ( m, n, a, ' COMPANION matrix:' ) value = companion_determinant ( n, x ) print ' Value = %g' % ( value ) print '' print 'COMPANION_DETERMINANT_TEST' print ' Normal end of execution.' return def companion_inverse ( n, x ): #*****************************************************************************80 # ## COMPANION_INVERSE returns the inverse of the COMPANION matrix. # # Example: # # N = 5, X = ( 1, 2, 3, 4, 5 ) # # 0 1 0 0 0 # 0 0 1 0 0 # 0 0 0 1 0 # 0 0 0 0 1 # 1/1 -5/1 -4/1 -3/1 -2/1 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 March 2015 # # Author: # # John Burkardt # # Reference: # # Gene Golub, Charles Van Loan, # Matrix Computations, second edition, # Johns Hopkins University Press, Baltimore, Maryland, 1989, # section 7.4.6. # # Charles Kenney, Alan Laub, # Controllability and stability radii for companion form systems, # Math. Control Signals Systems, # Volume 1, 1988, pages 239-256. # # James Wilkinson, # The Algebraic Eigenvalue Problem, # Oxford University Press, # 1965, page 12. # # Parameters: # # Input, integer N, the order of the matrix. # # Input, real X(N), the coefficients of the polynomial # which define the matrix. X(1) must not be zero. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for j in range ( 0, n ): for i in range ( 0, n ): if ( i == n - 1 ): if ( j == 0 ): a[i,j] = 1.0 / x[0] else: a[i,j] = - x[n-j] / x[0] elif ( i == j - 1 ): a[i,j] = 1.0 return a def companion_test ( ): #*****************************************************************************80 # ## COMPANION_TEST tests COMPANION. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 09 January 2015 # # Author: # # John Burkardt # from r8vec_uniform_ab import r8vec_uniform_ab from r8mat_print import r8mat_print print '' print 'COMPANION_TEST' print ' COMPANION computes the COMPANION matrix.' n = 5 x_lo = -5.0 x_hi = +5.0 seed = 123456789 x, seed = r8vec_uniform_ab ( n, x_lo, x_hi, seed ) a = companion ( n, x ) m = n r8mat_print ( m, n, a, ' COMPANION matrix:' ) print '' print 'COMPANION_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) companion_test ( ) timestamp ( )