#! /usr/bin/env python # def complex_i ( ): #*****************************************************************************80 # ## COMPLEX_I returns the COMPLEX_I matrix. # # Discussion: # # This is a 2 by 2 matrix that behaves like the imaginary unit. # # Formula: # # 0 1 # -1 0 # # Properties: # # A is integral: int ( A ) = A. # # A is anti-involutional: A * A = - I # # A * A * A * A = I # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 09 January 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real A(2,2), the matrix. # import numpy as np a = np.array ( [ [ 0.0, 1.0 ], \ [ -1.0, 0.0 ] \ ] ) return a def complex_i_determinant ( ): #*****************************************************************************80 # ## COMPLEX_I_DETERMINANT returns the determinant of the COMPLEX_I matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 09 January 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real DETERM, the determinant. # determ = 1.0 return determ def complex_i_determinant_test ( ): #*****************************************************************************80 # ## COMPLEX_I_DETERMINANT_TEST tests COMPLEX_I_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 09 January 2015 # # Author: # # John Burkardt # from complex_i import complex_i from r8mat_print import r8mat_print print '' print 'COMPLEX_I_DETERMINANT_TEST' print ' COMPLEX_I_DETERMINANT computes the determinant of the COMPLEX_I matrix.' m = 2 n = m a = complex_i ( ) r8mat_print ( m, n, a, ' COMPLEX_I matrix:' ) value = complex_i_determinant ( ) print '' print ' Value = %g' % ( value ) print '' print 'COMPLEX_I_DETERMINANT_TEST' print ' Normal end of execution.' return def complex_i_inverse ( ): #*****************************************************************************80 # ## COMPLEX_I_INVERSE returns the inverse of the COMPLEX_I matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 25 March 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real A(2,2), the matrix. # import numpy as np a = np.array ( [ \ [ 0.0, -1.0 ], \ [ +1.0, 0.0 ] ] ) return a def complex_i_test ( ): #*****************************************************************************80 # ## COMPLEX_I_TEST tests COMPLEX_I. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 09 January 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'COMPLEX_I_TEST' print ' COMPLEX_I computes the COMPLEX_I matrix.' m = 2 n = m a = complex_i ( ) r8mat_print ( m, n, a, ' COMPLEX_I matrix:' ) print '' print 'COMPLEX_I_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) complex_i_test ( ) timestamp ( )