#! /usr/bin/env python # def conex1 ( alpha ): #*****************************************************************************80 # ## CONEX1 returns the CONEX1 matrix. # # Discussion: # # The CONEX1 matrix is a counterexample to the LINPACK condition # number estimator RCOND available in the LINPACK routine DGECO. # # Formula: # # 1 -1 -2*ALPHA 0 # 0 1 ALPHA -ALPHA # 0 1 1+ALPHA -1-ALPHA # 0 0 0 ALPHA # # Example: # # ALPHA = 100 # # 1 -1 -200 0 # 0 1 100 -100 # 0 1 101 -101 # 0 0 0 100 # # Properties: # # A is generally not symmetric: A' /= A. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 09 January 2015 # # Author: # # John Burkardt # # Reference: # # Alan Cline, RK Rew, # A set of counterexamples to three condition number estimators, # SIAM Journal on Scientific and Statistical Computing, # Volume 4, 1983, pages 602-611. # # Parameters: # # Input, real ALPHA, the scalar defining A. # A common value is 100.0. # # Output, real A(4,4), the matrix. # import numpy as np a = np.array ( [ [ 1.0, -1.0, -2.0 * alpha, 0.0 ], \ [ 0.0, 1.0, alpha, - alpha ], \ [ 0.0, 1.0, 1.0 + alpha, - 1.0 - alpha ], \ [ 0.0, 0.0, 0.0, alpha ] \ ] ) return a def conex1_condition ( alpha ): #*****************************************************************************80 # ## CONEX1_CONDITION returns the L1 condition of the CONEX1 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 06 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real ALPHA, the scalar defining A. # A common value is 100.0. # # Output, real VALUE, the L1 condition. # a_norm = max ( 3.0, 3.0 * abs ( alpha ) + abs ( 1.0 + alpha ) ) v1 = abs ( 1.0 - alpha ) + abs ( 1.0 + alpha ) + 1.0 v2 = 2.0 * abs ( alpha ) + 1.0 v3 = 2.0 + 2.0 / abs ( alpha ) b_norm = max ( v1, max ( v2, v3 ) ) value = a_norm * b_norm return value def conex1_condition_test ( ): #*****************************************************************************80 # ## CONEX1_CONDITION_TEST tests CONEX1_CONDITION. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 06 February 2015 # # Author: # # John Burkardt # from conex1 import conex1 from r8mat_print import r8mat_print from r8_uniform_ab import r8_uniform_ab print '' print 'CONEX1_CONDITION_TEST' print ' CONEX1_CONDITION computes the condition of the CONEX1 matrix.' print '' m = 4 n = m r8_lo = -5.0 r8_hi = +5.0 seed = 123456789 alpha, seed = r8_uniform_ab ( r8_lo, r8_hi, seed ) a = conex1 ( alpha ) r8mat_print ( m, n, a, ' CONEX1 matrix:' ) value = conex1_condition ( alpha ) print '' print ' Value = %g' % ( value ) print '' print 'CONEX1_CONDITION_TEST' print ' Normal end of execution.' return def conex1_determinant ( alpha ): #*****************************************************************************80 # ## CONEX1_DETERMINANT returns the determinant of the CONEX1 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 09 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real ALPHA, the scalar defining A. # A common value is 100.0. # # Output, real DETERM, the determinant. # determ = alpha return determ def conex1_determinant_test ( ): #*****************************************************************************80 # ## CONEX1_DETERMINANT_TEST tests CONEX1_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 09 January 2015 # # Author: # # John Burkardt # from conex1 import conex1 from r8mat_print import r8mat_print from r8_uniform_ab import r8_uniform_ab print '' print 'CONEX1_DETERMINANT_TEST' print ' CONEX1_DETERMINANT computes the determinant of the CONEX1 matrix.' print '' m = 4 n = m alpha_lo = 1.0 alpha_hi = 100.0 seed = 123456789 alpha, seed = r8_uniform_ab ( alpha_lo, alpha_hi, seed ) a = conex1 ( alpha ) r8mat_print ( m, n, a, ' CONEX1 matrix:' ) value = conex1_determinant ( alpha ) print '' print ' Value = %g' % ( value ) print '' print 'CONEX1_DETERMINANT_TEST' print ' Normal end of execution.' return def conex1_inverse ( alpha ): #*****************************************************************************80 # #% CONEX1_INVERSE returns the inverse of the CONEX1 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real ALPHA, the scalar defining A. # A common value is 100.0. # # Output, real A(4,4), the matrix. # import numpy as np a = np.zeros ( ( 4, 4 ) ) a[0,0] = 1.0 a[0,1] = 1.0 - alpha a[0,2] = alpha a[0,3] = 2.0 a[1,0] = 0.0 a[1,1] = 1.0 + alpha a[1,2] = - alpha a[1,3] = 0.0 a[2,0] = 0.0 a[2,1] = -1.0 a[2,2] = 1.0 a[2,3] = 1.0 / alpha a[3,0] = 0.0 a[3,1] = 0.0 a[3,2] = 0.0 a[3,3] = 1.0 / alpha return a def conex1_test ( ): #*****************************************************************************80 # ## CONEX1_TEST tests CONEX1. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 09 January 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print from r8_uniform_ab import r8_uniform_ab print '' print 'CONEX1_TEST' print ' CONEX1 computes the CONEX1 matrix.' m = 4 n = m alpha_lo = 1.0 alpha_hi = 100.0 seed = 123456789 alpha, seed = r8_uniform_ab ( alpha_lo, alpha_hi, seed ) a = conex1 ( alpha ) r8mat_print ( m, n, a, ' CONEX1 matrix:' ) print '' print 'CONEX1_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) conex1_test ( ) timestamp ( )