#! /usr/bin/env python # def conex2 ( alpha ): #*****************************************************************************80 # ## CONEX2 returns the CONEX2 matrix. # # Discussion: # # CONEX2 is a 3 by 3 LINPACK condition number counterexample. # # Formula: # # 1 1-1/ALPHA^2 -2 # 0 1/ALPHA -1/ALPHA # 0 0 1 # # Example: # # ALPHA = 100 # # 1 0.9999 -2 # 0 0.01 -0.01 # 0 0 1 # # Properties: # # A is generally not symmetric: A' /= A. # # A is upper triangular. # # det ( A ) = 1 / ALPHA. # # LAMBDA = ( 1, 1/ALPHA, 1 ) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 09 January 2015 # # Author: # # John Burkardt # # Reference: # # Alan Cline, RK Rew, # A set of counterexamples to three condition number estimators, # SIAM Journal on Scientific and Statistical Computing, # Volume 4, 1983, pages 602-611. # # Parameters: # # Input, real ALPHA, the scalar defining A. # A common value is 100.0. ALPHA must not be zero. # # Output, real A(3,3), the atrix. # import numpy as np from sys import exit if ( alpha == 0.0 ): print '' print 'CONEX2 - Fatal error!' print ' The input value of ALPHA was zero.' exit ( 'CONEX2 - Fatal error!' ) a = np.array ( [ \ [ 1.0, ( alpha * alpha - 1.0 ) / ( alpha * alpha ), -2.0 ], \ [ 0.0, 1.0 / alpha, -1.0 / alpha ], \ [ 0.0, 0.0, 1.0 ] \ ] ) return a def conex2_condition ( alpha ): #*****************************************************************************80 # ## CONEX2_CONDITION returns the L1 condition of the CONEX2 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 06 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real ALPHA, the scalar defining A. # # Output, real VALUE, the L1 condition. # c1 = 1.0 c2 = abs ( 1.0 - 1.0 / alpha ** 2 ) + 1.0 / abs ( alpha ) c3 = 3.0 + 1.0 / abs ( alpha ) a_norm = max ( c1, max ( c2, c3 ) ) c1 = 1.0 c2 = abs ( ( 1.0 - alpha * alpha ) / alpha ) + abs ( alpha ) c3 = abs ( ( 1.0 + alpha * alpha ) / alpha ** 2 ) + 2.0 b_norm = max ( c1, max ( c2, c3 ) ) value = a_norm * b_norm return value def conex2_condition_test ( ): #*****************************************************************************80 # ## CONEX2_CONDITION_TEST tests CONEX2_CONDITION. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 February 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print from r8_uniform_ab import r8_uniform_ab print '' print 'CONEX2_CONDITION_TEST' print ' CONEX2_CONDITION computes the condition of the CONEX2 matrix.' print '' m = 3 n = m r8_lo = -5.0 r8_hi = +5.0 seed = 123456789 alpha, seed = r8_uniform_ab ( r8_lo, r8_hi, seed ) a = conex2 ( alpha ) r8mat_print ( m, n, a, ' CONEX2 matrix:' ) value = conex2_condition ( alpha ) print '' print ' Value = %g' % ( value ) print '' print 'CONEX2_CONDITION_TEST' print ' Normal end of execution.' return def conex2_determinant ( alpha ): #*****************************************************************************80 # ## CONEX2_DETERMINANT returns the determinant of the CONEX2 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 09 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real ALPHA, the scalar defining A. # A common value is 100.0. # # Output, real DETERM, the determinant. # determ = 1.0 / alpha return determ def conex2_determinant_test ( ): #*****************************************************************************80 # ## CONEX2_DETERMINANT_TEST tests CONEX2_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 09 January 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print from r8_uniform_ab import r8_uniform_ab print '' print 'CONEX2_DETERMINANT_TEST' print ' CONEX2_DETERMINANT computes the determinant of the CONEX2 matrix.' print '' m = 3 n = m alpha_lo = 1.0 alpha_hi = 100.0 seed = 123456789 alpha, seed = r8_uniform_ab ( alpha_lo, alpha_hi, seed ) a = conex2 ( alpha ) r8mat_print ( m, n, a, ' CONEX2 matrix:' ) value = conex2_determinant ( alpha ) print '' print ' Value = %g' % ( value ) print '' print 'CONEX2_DETERMINANT_TEST' print ' Normal end of execution.' return def conex2_inverse ( alpha ): #*****************************************************************************80 # ## CONEX2_INVERSE returns the inverse of the CONEX2 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real ALPHA, the scalar defining A. # A common value is 100.0. ALPHA must not be zero. # # Output, real A(3,3), the matrix. # import numpy as np from sys import exit a = np.zeros ( ( 3, 3 ) ) if ( alpha == 0.0 ): print '' print 'CONEX2_INVERSE - Fatal error!' print ' The input value of ALPHA was zero.' exit ( 'CONEX2_INVERSE - Fatal error!' ) a[0,0] = 1.0 a[0,1] = ( 1.0 - alpha * alpha ) / alpha a[0,2] = ( 1.0 + alpha * alpha ) / alpha ** 2 a[1,0] = 0.0 a[1,1] = alpha a[1,2] = 1.0 a[2,0] = 0.0 a[2,1] = 0.0 a[2,2] = 1.0 return a def conex2_test ( ): #*****************************************************************************80 # ## CONEX2_TEST tests CONEX2. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 09 January 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print from r8_uniform_ab import r8_uniform_ab print '' print 'CONEX2_TEST' print ' CONEX2 computes the CONEX2 matrix.' m = 3 n = m alpha_lo = 1.0 alpha_hi = 100.0 seed = 123456789 alpha, seed = r8_uniform_ab ( alpha_lo, alpha_hi, seed ) a = conex2 ( alpha ) r8mat_print ( m, n, a, ' CONEX2 matrix:' ) print '' print 'CONEX2_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) conex2_test ( ) timestamp ( )