#! /usr/bin/env python # def creation ( m, n ): #*****************************************************************************80 # ## CREATION returns the CREATION matrix. # # Example: # # M = 5, N = 5 # # 0 0 0 0 0 # 1 0 0 0 0 # 0 2 0 0 0 # 0 0 3 0 0 # 0 0 0 4 0 # # Properties: # # A is integral: int ( A ) = A. # # A is strictly lower triangular. # # Square properties: # # A is generally not symmetric: A' /= A. # # A is singular. # # A has the null vector ( 0, 0, ..., 0, 1 ). # # det ( A ) = 0. # # LAMBDA(1:N) = 0 # # A is zero except for the first lower diagonal. A^2 is zero except for # the second lower diagonal. A^(N-1) is the last nonzero power of A, # with a single nonzero entry in the (N,1) position. # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 09 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer M, the number of rows of A. # # Input, integer N, the number of columns of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( [ m, n ] ) for j in range ( 0, n ): for i in range ( 0, m ): if ( i == j + 1 ): a[i,j] = j + 1 else: a[i,j] = 0.0 return a def creation_determinant ( n ): #*****************************************************************************80 # ## CREATION_DETERMINANT computes the determinant of the CREATION matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 09 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real DETERM, the determinant. # determ = 0.0 return determ def creation_determinant_test ( ): #*****************************************************************************80 # ## CREATION_DETERMINANT_TEST tests CREATION_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 09 January 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'CREATION_DETERMINANT_TEST' print ' CREATION_DETERMINANT computes the CREATION determinant.' n = 5 m = n a = creation ( m, n, ) r8mat_print ( m, n, a, ' CREATION matrix:' ) value = creation_determinant ( n ) print ' Value = %g' % ( value ) print '' print 'CREATION_DETERMINANT_TEST' print ' Normal end of execution.' return def creation_null_left ( m, n ): #*****************************************************************************80 # ## CREATION_NULL_LEFT returns a left null vector for the CREATION matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer M, N, the order of the matrix. # # Output, real X(M), the vector. # import numpy as np x = np.zeros ( m ) x[0] = 1.0 return x def creation_null_right ( m, n ): #*****************************************************************************80 # ## CREATION_NULL_RIGHT returns a right null vector for the CREATION matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 12 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer M, N, the order of the matrix. # # Output, real X(N), the vector. # import numpy as np x = np.zeros ( n ) x[n-1] = 1.0 return x def creation_test ( ): #*****************************************************************************80 # ## CREATION_TEST tests CREATION. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 09 January 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'CREATION_TEST' print ' CREATION computes the CREATION matrix.' m = 5 n = 4 a = creation ( m, n ) r8mat_print ( m, n, a, ' CREATION matrix:' ) print '' print 'CREATION_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) creation_test ( ) creation_determinant_test ( ) timestamp ( )