#! /usr/bin/env python # def daub10 ( n ): #*****************************************************************************80 # ## DAUB10 returns the DAUB10 matrix. # # Discussion: # # The DAUB10 matrix is the Daubechies wavelet transformation matrix # with 10 coefficients. # # Properties: # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # N must be at least 10 and a multiple of 2. # # Output, real A(N,N), the matrix. # import numpy as np from math import sqrt from i4_wrap import i4_wrap from sys import exit if ( n < 10 or ( n % 2 ) != 0 ): print '' print 'DAUB10 - Fatal error!' print ' N must be at least 10 and a multiple of 2.' exit ( 'DAUB10 - Fatal error!' ) a = np.zeros ( [ n, n ] ) c = np.array ( [ \ 0.1601023979741929, \ 0.6038292697971895, \ 0.7243085284377726, \ 0.1384281459013203, \ -0.2422948870663823, \ -0.0322448695846381, \ 0.0775714938400459, \ -0.0062414902127983, \ -0.0125807519990820, \ 0.0033357252854738 ] ) for i in range ( 0, n - 1, 2 ): a[i,i] = c[0] a[i,i+1] = c[1] a[i,i4_wrap(i+2,0,n-1)] = c[2] a[i,i4_wrap(i+3,0,n-1)] = c[3] a[i,i4_wrap(i+4,0,n-1)] = c[4] a[i,i4_wrap(i+5,0,n-1)] = c[5] a[i,i4_wrap(i+6,0,n-1)] = c[6] a[i,i4_wrap(i+7,0,n-1)] = c[7] a[i,i4_wrap(i+8,0,n-1)] = c[8] a[i,i4_wrap(i+9,0,n-1)] = c[9] a[i+1,i] = c[9] a[i+1,i+1] = - c[8] a[i+1,i4_wrap(i+2,0,n-1)] = c[7] a[i+1,i4_wrap(i+3,0,n-1)] = - c[6] a[i+1,i4_wrap(i+4,0,n-1)] = c[5] a[i+1,i4_wrap(i+5,0,n-1)] = - c[4] a[i+1,i4_wrap(i+6,0,n-1)] = c[3] a[i+1,i4_wrap(i+7,0,n-1)] = - c[2] a[i+1,i4_wrap(i+8,0,n-1)] = c[1] a[i+1,i4_wrap(i+9,0,n-1)] = - c[0] return a def daub10_condition ( n ): #*****************************************************************************80 # ## DAUB10_CONDITION returns the L1 condition of the DAUB10 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 25 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the dimension of the matrix. # # Output, real VALUE, the condition. # import numpy as np c = np.array ( [ \ 0.1601023979741929, \ 0.6038292697971895, \ 0.7243085284377726, \ 0.1384281459013203, \ -0.2422948870663823, \ -0.0322448695846381, \ 0.0775714938400459, \ -0.0062414902127983, \ -0.0125807519990820, \ 0.0033357252854738 ] ) a_norm = np.sum ( np.abs ( c ) ) b_norm = a_norm value = a_norm * b_norm return value def daub10_condition_test ( ): #*****************************************************************************80 # ## DAUB10_CONDITION_TEST tests DAUB10_CONDITION. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 25 January 2015 # # Author: # # John Burkardt # from daub10 import daub10 from r8mat_print import r8mat_print print '' print 'DAUB10_CONDITION_TEST' print ' DAUB10_CONDITION computes the condition of the DAUB10 matrix.' m = 20 n = m a = daub10 ( n ) r8mat_print ( m, n, a, ' DAUB10 matrix:' ) value = daub10_condition ( n ) print '' print ' Value = %g' % ( value ) print '' print 'DAUB10_CONDITION_TEST' print ' Normal end of execution.' return def daub10_determinant ( n ): #*****************************************************************************80 # ## DAUB10_DETERMINANT returns the determinant of the DAUB10 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the dimension of the matrix. # # Output, real DETERM, the determinant. # determ = + 1.0 return determ def daub10_determinant_test ( ): #*****************************************************************************80 # ## DAUB10_DETERMINANT_TEST tests DAUB10_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 January 2015 # # Author: # # John Burkardt # from daub10 import daub10 from r8mat_print import r8mat_print print '' print 'DAUB10_DETERMINANT_TEST' print ' DAUB10_DETERMINANT computes the determinant of the DAUB10 matrix.' m = 20 n = m a = daub10 ( n ) r8mat_print ( m, n, a, ' DAUB10 matrix:' ) value = daub10_determinant ( n ) print '' print ' Value = %g' % ( value ) print '' print 'DAUB10_DETERMINANT_TEST' print ' Normal end of execution.' return def daub10_inverse ( n ): #*****************************************************************************80 # ## DAUB10_INVERSE returns the inverse of the DAUB10 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real A(N,N), the matrix. # import numpy as np a = daub10 ( n ) a = np.transpose ( a ) return a def daub10_test ( ): #*****************************************************************************80 # ## DAUB10_TEST tests DAUB10. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 January 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'DAUB10_TEST' print ' DAUB10 computes the DAUB10 matrix.' m = 20 n = m a = daub10 ( n ) r8mat_print ( m, n, a, ' DAUB10 matrix:' ) print '' print 'DAUB10_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) daub10_test ( ) timestamp ( )