#! /usr/bin/env python # def daub6 ( n ): #*****************************************************************************80 # ## DAUB6 returns the DAUB6 matrix. # # Discussion: # # The DAUB6 matrix is the Daubechies wavelet transformation matrix # with 6 coefficients. # # Properties: # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 11 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # N must be at least 6 and a multiple of 2. # # Output, real A(N,N), the matrix. # import numpy as np from math import sqrt from i4_wrap import i4_wrap from sys import exit if ( n < 6 or ( n % 2 ) != 0 ): print '' print 'DAUB6 - Fatal error!' print ' N must be at least 6 and a multiple of 2.' exit ( 'DAUB6 - Fatal error!' ) a = np.zeros ( [ n, n ] ) c0 = 1.0 + sqrt ( 10.0 ) + sqrt ( 5.0 + sqrt ( 40.0 ) ) c1 = 5.0 + sqrt ( 10.0 ) + 3.0 * sqrt ( 5.0 + sqrt ( 40.0 ) ) c2 = 10.0 - sqrt ( 40.0 ) + 2.0 * sqrt ( 5.0 + sqrt ( 40.0 ) ) c3 = 10.0 - sqrt ( 40.0 ) - 2.0 * sqrt ( 5.0 + sqrt ( 40.0 ) ) c4 = 5.0 + sqrt ( 10.0 ) - 3.0 * sqrt ( 5.0 + sqrt ( 40.0 ) ) c5 = 1.0 + sqrt ( 10.0 ) - sqrt ( 5.0 + sqrt ( 40.0 ) ) c0 = c0 / sqrt ( 512.0 ) c1 = c1 / sqrt ( 512.0 ) c2 = c2 / sqrt ( 512.0 ) c3 = c3 / sqrt ( 512.0 ) c4 = c4 / sqrt ( 512.0 ) c5 = c5 / sqrt ( 512.0 ) for i in range ( 0, n - 1, 2 ): a[i,i] = c0 a[i,i+1] = c1 a[i,i4_wrap(i+2,0,n-1)] = c2 a[i,i4_wrap(i+3,0,n-1)] = c3 a[i,i4_wrap(i+4,0,n-1)] = c4 a[i,i4_wrap(i+5,0,n-1)] = c5 a[i+1,i] = c5 a[i+1,i+1] = - c4 a[i+1,i4_wrap(i+2,0,n-1)] = c3 a[i+1,i4_wrap(i+3,0,n-1)] = - c2 a[i+1,i4_wrap(i+4,0,n-1)] = c1 a[i+1,i4_wrap(i+5,0,n-1)] = - c0 return a def daub6_condition ( n ): #*****************************************************************************80 # ## DAUB6_CONDITION returns the L1 condition of the DAUB6 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 25 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the dimension of the matrix. # # Output, real VALUE, the condition. # import numpy as np c0 = 1.0 + np.sqrt ( 10.0 ) + np.sqrt ( 5.0 + np.sqrt ( 40.0 ) ) c1 = 5.0 + np.sqrt ( 10.0 ) + 3.0 * np.sqrt ( 5.0 + np.sqrt ( 40.0 ) ) c2 = 10.0 - np.sqrt ( 40.0 ) + 2.0 * np.sqrt ( 5.0 + np.sqrt ( 40.0 ) ) c3 = 10.0 - np.sqrt ( 40.0 ) - 2.0 * np.sqrt ( 5.0 + np.sqrt ( 40.0 ) ) c4 = 5.0 + np.sqrt ( 10.0 ) - 3.0 * np.sqrt ( 5.0 + np.sqrt ( 40.0 ) ) c5 = 1.0 + np.sqrt ( 10.0 ) - np.sqrt ( 5.0 + np.sqrt ( 40.0 ) ) c0 = c0 / np.sqrt ( 512.0 ) c1 = c1 / np.sqrt ( 512.0 ) c2 = c2 / np.sqrt ( 512.0 ) c3 = c3 / np.sqrt ( 512.0 ) c4 = c4 / np.sqrt ( 512.0 ) c5 = c5 / np.sqrt ( 512.0 ) a_norm = np.abs ( c0 ) + np.abs ( c1 ) \ + np.abs ( c2 ) + np.abs ( c3 ) \ + np.abs ( c4 ) + np.abs ( c5 ) b_norm = a_norm value = a_norm * b_norm return value def daub6_condition_test ( ): #*****************************************************************************80 # ## DAUB6_CONDITION_TEST tests DAUB6_CONDITION. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 25 January 2015 # # Author: # # John Burkardt # from daub6 import daub6 from r8mat_print import r8mat_print print '' print 'DAUB6_CONDITION_TEST' print ' DAUB6_CONDITION computes the condition of the DAUB6 matrix.' m = 12 n = m a = daub6 ( n ) r8mat_print ( m, n, a, ' DAUB6 matrix:' ) value = daub6_condition ( n ) print '' print ' Value = %g' % ( value ) print '' print 'DAUB6_CONDITION_TEST' print ' Normal end of execution.' return def daub6_determinant ( n ): #*****************************************************************************80 # ## DAUB6_DETERMINANT returns the determinant of the DAUB6 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 11 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the dimension of the matrix. # # Output, real DETERM, the determinant. # determ = + 1.0 return determ def daub6_determinant_test ( ): #*****************************************************************************80 # ## DAUB6_DETERMINANT_TEST tests DAUB6_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 11 January 2015 # # Author: # # John Burkardt # from daub6 import daub6 from r8mat_print import r8mat_print print '' print 'DAUB6_DETERMINANT_TEST' print ' DAUB6_DETERMINANT computes the determinant of the DAUB6 matrix.' m = 12 n = m a = daub6 ( n ) r8mat_print ( m, n, a, ' DAUB6 matrix:' ) value = daub6_determinant ( n ) print '' print ' Value = %g' % ( value ) print '' print 'DAUB6_DETERMINANT_TEST' print ' Normal end of execution.' return def daub6_inverse ( n ): #*****************************************************************************80 # ## DAUB6_INVERSE returns the inverse of the DAUB6 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real A(N,N), the matrix. # import numpy as np a = daub6 ( n ) a = np.transpose ( a ) return a def daub6_test ( ): #*****************************************************************************80 # ## DAUB6_TEST tests DAUB6. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 11 January 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'DAUB6_TEST' print ' DAUB6 computes the DAUB6 matrix.' m = 12 n = m a = daub6 ( n ) r8mat_print ( m, n, a, ' DAUB6 matrix:' ) print '' print 'DAUB6_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) daub6_test ( ) timestamp ( )