#! /usr/bin/env python # def daub8 ( n ): #*****************************************************************************80 # ## DAUB8 returns the DAUB8 matrix. # # Discussion: # # The DAUB8 matrix is the Daubechies wavelet transformation matrix # with 8 coefficients. # # Properties: # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 12 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # N must be at least 8 and a multiple of 2. # # Output, real A(N,N), the matrix. # import numpy as np from math import sqrt from i4_wrap import i4_wrap from sys import exit if ( n < 8 or ( n % 2 ) != 0 ): print '' print 'DAUB8 - Fatal error!' print ' N must be at least 8 and a multiple of 2.' exit ( 'DAUB8 - Fatal error!' ) a = np.zeros ( [ n, n ] ) c0 = 0.2303778133088964 c1 = 0.7148465705529154 c2 = 0.6308807679298587 c3 = -0.0279837694168599 c4 = -0.1870348117190931 c5 = 0.0308413818355607 c6 = 0.0328830116668852 c7 = -0.0105974017850690 for i in range ( 0, n - 1, 2 ): a[i,i] = c0 a[i,i+1] = c1 a[i,i4_wrap(i+2,0,n-1)] = c2 a[i,i4_wrap(i+3,0,n-1)] = c3 a[i,i4_wrap(i+4,0,n-1)] = c4 a[i,i4_wrap(i+5,0,n-1)] = c5 a[i,i4_wrap(i+6,0,n-1)] = c6 a[i,i4_wrap(i+7,0,n-1)] = c7 a[i+1,i] = c7 a[i+1,i+1] = - c6 a[i+1,i4_wrap(i+2,0,n-1)] = c5 a[i+1,i4_wrap(i+3,0,n-1)] = - c4 a[i+1,i4_wrap(i+4,0,n-1)] = c3 a[i+1,i4_wrap(i+5,0,n-1)] = - c2 a[i+1,i4_wrap(i+6,0,n-1)] = c1 a[i+1,i4_wrap(i+7,0,n-1)] = - c0 return a def daub8_condition ( n ): #*****************************************************************************80 # ## DAUB8_CONDITION returns the L1 condition of the DAUB8 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 25 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the dimension of the matrix. # # Output, real VALUE, the condition. # import numpy as np c = np.array ( [ \ 0.2303778133088964, \ 0.7148465705529154, \ 0.6308807679298587, \ -0.0279837694168599, \ -0.1870348117190931, \ 0.0308413818355607, \ 0.0328830116668852, \ -0.0105974017850690 ] ) a_norm = np.sum ( np.abs ( c ) ) b_norm = a_norm value = a_norm * b_norm return value def daub8_condition_test ( ): #*****************************************************************************80 # ## DAUB8_CONDITION_TEST tests DAUB8_CONDITION. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 25 January 2015 # # Author: # # John Burkardt # from daub8 import daub8 from r8mat_print import r8mat_print print '' print 'DAUB8_CONDITION_TEST' print ' DAUB8_CONDITION computes the condition of the DAUB8 matrix.' m = 16 n = m a = daub8 ( n ) r8mat_print ( m, n, a, ' DAUB8 matrix:' ) value = daub8_condition ( n ) print '' print ' Value = %g' % ( value ) print '' print 'DAUB8_CONDITION_TEST' print ' Normal end of execution.' return def daub8_determinant ( n ): #*****************************************************************************80 # ## DAUB8_DETERMINANT returns the determinant of the DAUB8 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 12 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the dimension of the matrix. # # Output, real DETERM, the determinant. # determ = - 1.0 return determ def daub8_determinant_test ( ): #*****************************************************************************80 # ## DAUB8_DETERMINANT_TEST tests DAUB8_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 12 January 2015 # # Author: # # John Burkardt # from daub8 import daub8 from r8mat_print import r8mat_print print '' print 'DAUB8_DETERMINANT_TEST' print ' DAUB8_DETERMINANT computes the determinant of the DAUB8 matrix.' m = 16 n = m a = daub8 ( n ) r8mat_print ( m, n, a, ' DAUB8 matrix:' ) value = daub8_determinant ( n ) print '' print ' Value = %g' % ( value ) print '' print 'DAUB8_DETERMINANT_TEST' print ' Normal end of execution.' return def daub8_inverse ( n ): #*****************************************************************************80 # ## DAUB8_INVERSE returns the inverse of the DAUB8 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real A(N,N), the matrix. # import numpy as np a = daub8 ( n ) a = np.transpose ( a ) return a def daub8_test ( ): #*****************************************************************************80 # ## DAUB8_TEST tests DAUB8. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 12 January 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'DAUB8_TEST' print ' DAUB8 computes the DAUB8 matrix.' m = 16 n = m a = daub8 ( n ) r8mat_print ( m, n, a, ' DAUB8 matrix:' ) print '' print 'DAUB8_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) daub8_test ( ) timestamp ( )