#! /usr/bin/env python # def diagonal ( m, n, x ): #*****************************************************************************80 # ## DIAGONAL returns a DIAGONAL matrix. # # Formula: # # if ( I = J ) # A(I,J) = X(I) # else # A(I,J) = 0 # # Example: # # M = 5, N = 5, X = ( 1, 2, 3, 4, 5 ) # # 1 0 0 0 0 # 0 2 0 0 0 # 0 0 3 0 0 # 0 0 0 4 0 # 0 0 0 0 5 # # Square Properties: # # A is banded, with bandwidth 1. # # A is nonsingular if, and only if, each X(I) is nonzero. # # The inverse of A is a diagonal matrix with diagonal values 1/X(I). # # A is symmetric: A' = A. # # Because A is symmetric, it is normal. # # Because A is normal, it is diagonalizable. # # LAMBDA(1:N) = X(1:N). # # The matrix of eigenvectors of A is the identity matrix. # # det ( A ) = product ( 1 <= I <= N ) X(I). # # Because A is diagonal, it has property A (bipartite). # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer M, N, the number of rows and columns of A. # # Input, real X(min(M,N)), the diagonal entries of A. # # Output, real A(M,N), the matrix. # import numpy as np a = np.zeros ( [ m, n ] ) for j in range ( 0, n ): for i in range ( 0, m ): if ( i == j ): a[i,j] = x[i] return a def diagonal_condition ( n, x ): #*****************************************************************************80 # ## DIAGONAL_CONDITION computes the L1 condition of the DIAGONAL matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Input, real X(N), the diagonal elements. # # Output, real COND, the L1 condition. # import numpy as np cond = np.max ( np.abs ( x ) ) / np.min ( np.abs ( x ) ) return cond def diagonal_condition_test ( ): #*****************************************************************************80 # ## DIAGONAL_CONDITION_TEST tests DIAGONAL_CONDITION. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 January 2015 # # Author: # # John Burkardt # from diagonal import diagonal from r8vec_uniform_ab import r8vec_uniform_ab from r8mat_print import r8mat_print print '' print 'DIAGONAL_CONDITION_TEST' print ' DIAGONAL_CONDITION computes the DIAGONAL condition.' m = 5 n = m x_lo = -5.0 x_hi = +10.0 seed = 123456789 x, seed = r8vec_uniform_ab ( n, x_lo, x_hi, seed ) a = diagonal ( m, n, x ) r8mat_print ( m, n, a, ' DIAGONAL matrix:' ) value = diagonal_condition ( n, x ) print ' Value = %g' % ( value ) print '' print 'DIAGONAL_CONDITION_TEST' print ' Normal end of execution.' return def diagonal_determinant ( n, x ): #*****************************************************************************80 # ## DIAGONAL_DETERMINANT computes the determinant of the DIAGONAL matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Input, real X(N-1), the diagonal elements. # # Output, real VALUE, the determinant. # value = 1.0 for i in range ( 0, n ): value = value * x[i] return value def diagonal_determinant_test ( ): #*****************************************************************************80 # ## DIAGONAL_DETERMINANT_TEST tests DIAGONAL_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 January 2015 # # Author: # # John Burkardt # from diagonal import diagonal from r8vec_uniform_ab import r8vec_uniform_ab from r8mat_print import r8mat_print print '' print 'DIAGONAL_DETERMINANT_TEST' print ' DIAGONAL_DETERMINANT computes the DIAGONAL determinant.' m = 5 n = m r8_lo = -5.0 r8_hi = +5.0 seed = 123456789 x, seed = r8vec_uniform_ab ( n, r8_lo, r8_hi, seed ) a = diagonal ( m, n, x ) r8mat_print ( m, n, a, ' DIAGONAL matrix:' ) value = diagonal_determinant ( n, x ) print ' Value = %g' % ( value ) print '' print 'DIAGONAL_DETERMINANT_TEST' print ' Normal end of execution.' return def diagonal_eigen_left ( n, d ): #*****************************************************************************80 # ## DIAGONAL_EIGEN_LEFT returns left eigenvectors of the DIAGONAL matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Input, real D(N), the diagonal entries. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): a[i,i] = 1.0 return a def diagonal_eigen_right ( n, d ): #*****************************************************************************80 # ## DIAGONAL_EIGEN_RIGHT returns right eigenvectors of the DIAGONAL matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Input, real D(N), the diagonal entries. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): a[i,i] = 1.0 return a def diagonal_eigenvalues ( n, x ): #*****************************************************************************80 # ## DIAGONAL_EIGENVALUES returns the eigenvalues of the DIAGONAL matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Input, real X(N), the diagonal entries. # # Output, real LAM(N), the eigenvalues. # import numpy as np lam = np.copy ( x ) return lam def diagonal_inverse ( n, x ): #*****************************************************************************80 # ## DIAGONAL_INVERSE returns the inverse of the DIAGONAL matrix. # # Discussion: # # The diagonal entries must be nonzero. # # Example: # # M = 5, N = 5, X = ( 1, 2, 3, 4, 5 ) # # 1 0 0 0 0 # 0 1/2 0 0 0 # 0 0 1/3 0 0 # 0 0 0 1/4 0 # 0 0 0 0 1/5 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N , the number of rows and columns # of the matrix. # # Input, real X(N), the diagonal entries of the matrix. # # Output, real A(N,N), the inverse of the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): a[i,i] = 1.0 / x[i] return a def diagonal_test ( ): #*****************************************************************************80 # ## DIAGONAL_TEST tests DIAGONAL. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 January 2015 # # Author: # # John Burkardt # from r8vec_uniform_ab import r8vec_uniform_ab from r8mat_print import r8mat_print print '' print 'DIAGONAL_TEST' print ' DIAGONAL computes the DIAGONAL matrix.' m = 5 n = m r8_lo = -5.0 r8_hi = +5.0 seed = 123456789 x, seed = r8vec_uniform_ab ( n, r8_lo, r8_hi, seed ) a = diagonal ( m, n, x ) r8mat_print ( m, n, a, ' DIAGONAL matrix:' ) print '' print 'DIAGONAL_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) diagonal_test ( ) timestamp ( )