#! /usr/bin/env python # def dif1 ( m, n ): #*****************************************************************************80 # ## DIF1 returns the DIF1 matrix. # # Discussion: # # DIF1 is the first difference matrix. # # For a set of N points X(I) with equal spacing H, and a set of data # values Y(I) associated with those points, the product # 1/(2*H) * A * Y returns an approximation to the first derivative # of Y(X) at the interior points X(2:N-1). # # Example: # # N = 5 # # 0 +1 . . . # -1 0 +1 . . # . -1 0 +1 . # . . -1 0 +1 # . . . -1 0 # # Rectangular Properties: # # A is banded, with bandwidth 3. # # A is tridiagonal. # # Because A is tridiagonal, it has property A (bipartite). # # A is integral: int ( A ) = A. # # A is Toeplitz: constant along diagonals. # # Square Properties: # # A is antisymmetric: A' = -A. # # Because A is antisymmetric, it is normal. # # Because A is normal, it is diagonalizable. # # If N is even, then A is nonsingular. # If N is odd, then A is singular. # # If N is even, det ( A ) = 1.0. # If N is odd, det ( A ) = 0.0. # # If N is odd, a null vector is ( 1, 0, 1, 0, ..., 1, 0, 1 ).. # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer M, N, the number of rows and columns of A. # # Output, real A(M,N), the matrix. # import numpy as np a = np.zeros ( [ m, n ] ) for i in range ( 0, m ): if ( 0 <= i - 1 ): a[i,i-1] = -1.0 if ( i + 1 <= n - 1 ): a[i,i+1] = +1.0 return a def dif1_determinant ( n ): #*****************************************************************************80 # ## DIF1_DETERMINANT computes the determinant of the DIF1 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real DETERM, the determinant. # if ( ( n % 2 ) == 0 ): determ = 1.0 else: determ = 0.0 return determ def dif1_determinant_test ( ): #*****************************************************************************80 # ## DIF1_DETERMINANT_TEST tests DIF1_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 January 2015 # # Author: # # John Burkardt # from dif1 import dif1 from r8mat_print import r8mat_print print '' print 'DIF1_DETERMINANT_TEST' print ' DIF1_DETERMINANT computes the DIF1 determinant.' m = 5 n = m a = dif1 ( m, n ) r8mat_print ( m, n, a, ' DIF1 matrix:' ) value = dif1_determinant ( n ) print ' Value = %g' % ( value ) print '' print 'DIF1_DETERMINANT_TEST' print ' Normal end of execution.' return def dif1_inverse ( n ): #*****************************************************************************80 # ## DIF1_INVERSE returns the inverse of the DIF1 matrix. # # Discussion: # # The inverse only exists when N is even. # # Example: # # N = 8 # # 0 -1 0 -1 0 -1 0 -1 # 1 0 0 0 0 0 0 0 # 0 0 0 -1 0 -1 0 -1 # 1 0 1 0 0 0 0 0 # 0 0 0 0 0 -1 0 -1 # 1 0 1 0 1 0 0 0 # 0 0 0 0 0 0 0 -1 # 1 0 1 0 1 0 1 0 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 25 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real A(N,N), the matrix. # import numpy as np from sys import exit if ( ( n % 2 ) != 0 ): print '' print 'DIF1_INVERSE - Fatal error!' print ' Inverse only exists for N even.' exit ( 'DIF1_INVERSE - Fatal error!' ) a = np.zeros ( ( n, n ) ) for i in range ( 0, n - 1, 2 ): for j in range ( i + 1, n, 2 ): a[i,j] = -1.0 for i in range ( 1, n, 2 ): for j in range ( 0, i, 2 ): a[i,j] = 1.0 return a def dif1_null_left ( m, n ): #*****************************************************************************80 # ## DIF1_NULL_LEFT returns a left null vector for the DIF1 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 12 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer M, N, the order of the matrix. # # Output, real X(M), a left null vector. # import numpy as np from sys import exit x = np.zeros ( m ) if ( ( m % 2 ) == 0 ): print '' print 'DIF1_NULL_LEFT - Fatal error!' print ' The matrix is not singular for even M.' exit ( 'DIF1_NULL_LEFT - Fatal error!' ) for i in range ( 0, m, 2 ): x[i] = 1.0 return x def dif1_null_right ( m, n ): #*****************************************************************************80 # ## DIF1_NULL_RIGHT returns a right null vector for the DIF1 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 12 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer M, N, the order of the matrix. # # Output, real X(N), a right null vector. # import numpy as np from sys import exit x = np.zeros ( n ) if ( ( n % 2 ) == 0 ): print '' print 'DIF1_NULL_RIGHT - Fatal error!' print ' The matrix is not singular for even N.' exit ( 'DIF1_NULL_RIGHT - Fatal error!' ) for i in range ( 0, n, 2 ): x[i] = 1.0 return x def dif1_test ( ): #*****************************************************************************80 # ## DIF1_TEST tests DIF1. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 January 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'DIF1_TEST' print ' DIF1 computes the DIF1 matrix.' m = 5 n = m a = dif1 ( m, n ) r8mat_print ( m, n, a, ' DIF1 matrix:' ) print '' print 'DIF1_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) dif1_test ( ) timestamp ( )