#! /usr/bin/env python # def dif1cyclic ( n ): #*****************************************************************************80 # ## DIF1CYCLIC returns the cyclic first difference matrix. # # Example: # # N = 5 # # 0 +1 . . -1 # -1 0 +1 . . # . -1 0 +1 . # . . -1 0 +1 # +1 . . -1 0 # # Square Properties: # # A is integral: int ( A ) = A. # # A is Toeplitz: constant along diagonals. # # A is antisymmetric: A' = -A. # # Because A is antisymmetric, it is normal. # # Because A is normal, it is diagonalizable. # # A has constant row sum = 0. # # A has constant column sum = 0. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the number of rows and columns of A. # # Output, real A(N,N), the matrix. # import numpy as np from i4_wrap import i4_wrap a = np.zeros ( [ n, n ] ) for i in range ( 0, n ): im1 = i4_wrap ( i - 1, 0, n - 1 ) a[i,im1] = -1.0 ip1 = i4_wrap ( i + 1, 0, n - 1 ) a[i,ip1] = +1.0 return a def dif1cyclic_determinant ( n ): #*****************************************************************************80 # ## DIF1CYCLIC_DETERMINANT computes the determinant of the DIF1CYCLIC matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real DETERM, the determinant. # determ = 0.0 return determ def dif1cyclic_determinant_test ( ): #*****************************************************************************80 # ## DIF1CYCLIC_DETERMINANT_TEST tests DIF1CYCLIC_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 22 January 2015 # # Author: # # John Burkardt # from dif1cyclic import dif1cyclic from r8mat_print import r8mat_print print '' print 'DIF1CYCLIC_DETERMINANT_TEST' print ' DIF1CYCLIC_DETERMINANT computes the DIF1CYCLIC determinant.' m = 5 n = m a = dif1cyclic ( n ) r8mat_print ( m, n, a, ' DIF1 matrix:' ) value = dif1cyclic_determinant ( n ) print ' Value = %g' % ( value ) print '' print 'DIF1CYCLIC_DETERMINANT_TEST' print ' Normal end of execution.' return def dif1cyclic_null_left ( m, n ): #*****************************************************************************80 # ## DIF1CYCLIC_NULL_LEFT returns a left null vector of the DIF1CYCLIC matrix. # # Discussion: # # (1,1,1,...,1) is always a null vector. # # If M is even, # # (A,B,A,B,A,B,...,A,B) is also a null vector, for any A and B. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 12 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer M, N, the order of A. # # Output, real X(M), the null vector. # import numpy as np if ( ( m % 2 ) != 0 ): x = np.ones ( m ) else: a = 1.0 b = 2.0 x = np.zeros ( m ) for i in range ( 0, m ): x[i] = a t = a a = b b = t return x def dif1cyclic_null_right ( m, n ): #*****************************************************************************80 # ## DIF1CYCLIC_NULL_RIGHT returns a right null vector of the DIF1CYCLIC matrix. # # Discussion: # # (1,1,1,...,1) is always a null vector. # # If N is even, # # (A,B,A,B,A,B,...,A,B) is also a null vector, for any A and B. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 12 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer M, N, the order of A. # # Output, real X(N), the null vector. # import numpy as np if ( ( n % 2 ) != 0 ): x = np.ones ( n ) else: a = 1.0 b = 2.0 x = np.zeros ( n ) for i in range ( 0, n ): x[i] = a t = a a = b b = t return x def dif1cyclic_test ( ): #*****************************************************************************80 # ## DIF1CYCLIC_TEST tests DIF1CYCLIC. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 19 January 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'DIF1CYCLIC_TEST' print ' DIF1CYCLIC computes the DIF1CYCLIC matrix.' m = 5 n = m a = dif1cyclic ( n ) r8mat_print ( m, n, a, ' DIF1CYCLIC matrix:' ) print '' print 'DIF1CYCLIC_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) dif1cyclic_test ( ) dif1cyclic_determinant_test ( ) timestamp ( )