#! /usr/bin/env python # def dif2 ( m, n ): #*****************************************************************************80 # ## DIF2 returns the second difference matrix. # # Example: # # N = 5 # # 2 -1 . . . # -1 2 -1 . . # . -1 2 -1 . # . . -1 2 -1 # . . . -1 2 # # Rectangular Properties: # # A is banded, with bandwidth 3. # # A is tridiagonal. # # Because A is tridiagonal, it has property A (bipartite). # # A is integral: int ( A ) = A. # # A is Toeplitz: constant along diagonals. # # Square Properties: # # A is symmetric: A' = A. # # Because A is symmetric, it is normal. # # Because A is normal, it is diagonalizable. # # A is persymmetric: A(I,J) = A(N+1-J,N+1-I). # # A is positive definite. # # A is an M matrix. # # A is weakly diagonally dominant, but not strictly diagonally dominant. # # A has an LU factorization A = L * U, without pivoting. # # The matrix L is lower bidiagonal with subdiagonal elements: # # L(I+1,I) = -I/(I+1) # # The matrix U is upper bidiagonal, with diagonal elements # # U(I,I) = (I+1)/I # # and superdiagonal elements which are all -1. # # A has a Cholesky factorization A = L * L', with L lower bidiagonal. # # L(I,I) = sqrt ( (I+1) / I ) # L(I,I-1) = -sqrt ( (I-1) / I ) # # The eigenvalues are # # LAMBDA(I) = 2 + 2 * COS(I*PI/(N+1)) # = 4 SIN^2(I*PI/(2*N+2)) # # The corresponding eigenvector X(I) has entries # # X(I)(J) = sqrt(2/(N+1)) * sin ( I*J*PI/(N+1) ). # # Simple linear systems: # # x = (1,1,1,...,1,1), A*x=(1,0,0,...,0,1) # # x = (1,2,3,...,n-1,n), A*x=(0,0,0,...,0,n+1) # # det ( A ) = N + 1. # # The value of the determinant can be seen by induction, # and expanding the determinant across the first row: # # det ( A(N) ) = 2 * det ( A(N-1) ) - (-1) * (-1) * det ( A(N-2) ) # = 2 * N - (N-1) # = N + 1 # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 21 January 2015 # # Author: # # John Burkardt # # Reference: # # Robert Gregory, David Karney, # Example 3.18, # A Collection of Matrices for Testing Computational Algorithms, # Wiley, New York, 1969, page 45, # LC: QA263.G68. # # Morris Newman, John Todd, # Example A8, # The evaluation of matrix inversion programs, # Journal of the Society for Industrial and Applied Mathematics, # Volume 6, Number 4, pages 466-476, 1958. # # John Todd, # Example A8, # Basic Numerical Mathematics, # Volume 2: Numerical Algebra, # Academic Press, 1977, page 1. # # Joan Westlake, # Test Matrix A15, # A Handbook of Numerical Matrix Inversion and Solution of Linear Equations, # John Wiley, 1968. # # Parameters: # # Input, integer M, N, the number of rows and columns of A. # # Output, real A(M,N), the matrix. # import numpy as np a = np.zeros ( [ m, n ] ) for i in range ( 0, m ): if ( 0 <= i - 1 and i - 1 < n ): a[i,i-1] = -1.0 if ( i < n ): a[i,i] = 2.0 if ( i + 1 < n ): a[i,i+1] = -1.0 return a def dif2_condition ( n ): #*****************************************************************************80 # ## DIF2_CONDITION computes the L1 condition of the DIF2 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 07 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the L1 condition. # if ( n == 1 ): a_norm = 2.0 elif ( n == 2 ): a_norm = 3.0 else: a_norm = 4.0 b_norm = 0.0 for j in range ( 1, n + 1 ): t = 0.0 for i in range ( 1, n + 1 ): if ( i <= j ): t = t + float ( i * ( n - j + 1 ) ) / float ( n + 1 ) else: t = t + float ( j * ( n - i + 1 ) ) / float ( n + 1 ) b_norm = max ( b_norm, t ) value = a_norm * b_norm return value def dif2_condition_test ( ): #*****************************************************************************80 # ## DIF2_CONDITION_TEST tests DIF2_CONDITION. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 07 February 2015 # # Author: # # John Burkardt # from dif2 import dif2 from r8mat_print import r8mat_print print '' print 'DIF2_CONDITION_TEST' print ' DIF2_CONDITION computes the DIF2 condition.' m = 5 n = m a = dif2 ( m, n ) r8mat_print ( m, n, a, ' DIF2 matrix:' ) value = dif2_condition ( n ) print '' print ' Value = %g' % ( value ) print '' print 'DIF2_CONDITION_TEST' print ' Normal end of execution.' return def dif2_determinant ( n ): #*****************************************************************************80 # ## DIF2_DETERMINANT computes the determinant of the DIF2 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 21 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real DETERM, the determinant. # determ = n + 1 return determ def dif2_determinant_test ( ): #*****************************************************************************80 # ## DIF2_DETERMINANT_TEST tests DIF2_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 21 January 2015 # # Author: # # John Burkardt # from dif2 import dif2 from r8mat_print import r8mat_print print '' print 'DIF2_DETERMINANT_TEST' print ' DIF2_DETERMINANT computes the DIF2 determinant.' m = 5 n = m a = dif2 ( m, n ) r8mat_print ( m, n, a, ' DIF2 matrix:' ) value = dif2_determinant ( n ) print '' print ' Value = %g' % ( value ) print '' print 'DIF2_DETERMINANT_TEST' print ' Normal end of execution.' return def dif2_eigen_right ( n ): #*****************************************************************************80 # ## DIF2_EIGEN_RIGHT returns the right eigenvectors of the DIF2 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the right eigenvector matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): angle = float ( ( i + 1 ) * ( j + 1 ) ) * np.pi / float ( n + 1 ) a[i,j] = np.sqrt ( 2.0 / float ( n + 1 ) ) * np.sin ( angle ) return a def dif2_eigenvalues ( n ): #*****************************************************************************80 # ## DIF2_EIGENVALUES returns the eigenvalues of the second difference matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer M, N, the number of rows and columns of A. # # Output, real LAM(N), the eigenvalues. # import numpy as np lam = np.zeros ( n ) for i in range ( 0, n ): angle = float ( i + 1 ) * np.pi / float ( 2 * ( n + 1 ) ) lam[i] = 4.0 * ( np.sin ( angle ) ) ** 2 return lam def dif2_inverse ( n ): #*****************************************************************************80 # ## DIF2_INVERSE returns the inverse of the second difference matrix. # # Formula: # # if ( I <= J ) # A(I,J) = I * (N-J+1) / (N+1) # else # A(I,J) = J * (N-I+1) / (N+1) # # Example: # # N = 4 # # 4 3 2 1 # (1/5) * 3 6 4 2 # 2 4 6 3 # 1 2 3 4 # # Properties: # # A is symmetric: A' = A. # # Because A is symmetric, it is normal. # # Because A is normal, it is diagonalizable. # # A is persymmetric: A(I,J) = A(N+1-J,N+1-I). # # det ( A ) = 1 / ( N + 1 ). # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): if ( i <= j ): a[i,j] = float ( ( i + 1 ) * ( n - j ) ) / float ( n + 1 ) else: a[i,j] = float ( ( j + 1 ) * ( n - i ) ) / float ( n + 1 ) return a def dif2_llt ( n ): #*****************************************************************************80 # ## DIF2_LLT returns the Cholesky factor of the DIF2 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): a[i,i] = np.sqrt ( float ( i + 2 ) ) / np.sqrt ( float ( i + 1 ) ) for i in range ( 1, n ): a[i,i-1] = - np.sqrt ( float ( i ) ) / np.sqrt ( float ( i + 1 ) ) return a def dif2_plu ( n ): #*****************************************************************************80 # ## DIF2_PLU returns the PLU factors of the DIF2 matrix. # # Discussion: # # A = P * L * U # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real P(N,N), L(N,N), U(N,N), the pivot # matrix, the unit lower triangular matrix, and the upper # triangular matrix that form the PLU factoriztion of A. # import numpy as np p = np.zeros ( ( n, n ) ) for i in range ( 0, n ): p[i,i] = 1.0 l = np.zeros ( ( n, n ) ) for i in range ( 0, n ): l[i,i] = 1.0 for i in range ( 0, n - 1 ): l[i+1,i] = - float ( i + 1 ) / float ( i + 2 ) u = np.zeros ( ( n, n ) ) for i in range ( 0, n ): u[i,i] = float ( i + 2 ) / float ( i + 1 ) for i in range ( 0, n - 1 ): u[i,i+1] = -1.0 return p, l, u def dif2_rhs ( m, k ): #*****************************************************************************80 # ## DIF2_RHS returns the DIF2 right hand side. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 04 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer M, the row dimension. # # Input, integer K, the column dimension ( should be 2). # # Output, real B(M,K), the right hand side matrix. # import numpy as np b = np.zeros ( ( m, k ) ) if ( 1 <= k ): b[0,0] = 1.0 b[m-1,0] = 1.0 if ( 2 <= k ): b[m-1,1] = float ( m + 1 ) return b def dif2_solution ( n, k ): #*****************************************************************************80 # ## DIF2_SOLUTION returns the DIF2 solution matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 04 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the row dimension. # # Input, integer K, the column dimension (should be 2). # # Output, real X(N,K), the solution matrix. # import numpy as np x = np.zeros ( ( n, k ) ) if ( 1 <= k ): for i in range ( 0, n ): x[i,0] = 1.0 if ( 2 <= k ): for i in range ( 0, n ): x[i,1] = float ( i + 1 ) return x def dif2_test ( ): #*****************************************************************************80 # ## DIF2_TEST tests DIF2. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 21 January 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'DIF2_TEST' print ' DIF2 computes the DIF2 matrix.' m = 5 n = m a = dif2 ( m, n ) r8mat_print ( m, n, a, ' DIF2 matrix:' ) print '' print 'DIF2_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) dif2_test ( ) timestamp ( )