#! /usr/bin/env python # def eberlein ( alpha, n ): #*****************************************************************************80 # ## EBERLEIN returns the Eberlein matrix. # # Formula: # # if ( I = J ) # A(I,J) = - ( 2 * I - 1 ) * ( N - 1 ) - ( I - 1 ) * ALPHA + 2 * ( I - 1 )**2 # else if ( J = I+1 ) # A(I,J) = I * ( N + ALPHA - I ) # else if ( J = I-1 ) # A(I,J) = ( I - 1 ) * ( N - I + 1 ) # else # A(I,J) = 0 # # Example: # # N = 5, ALPHA = 2 # # -4 6 0 0 0 # 4 -12 10 0 0 # 0 6 -16 12 0 # 0 0 6 -16 12 # 0 0 0 4 -12 # # Properties: # # A is generally not symmetric: A' /= A. # # The matrix is tridiagonal. # # Because A is tridiagonal, it has property A (bipartite). # # A is banded, with bandwidth 3. # # The sum of the entries in any row except the last one is ALPHA. # # The sum of the entries in the last row is -(N-1)*ALPHA. # # The sum of the entries in any column is zero. # # A is singular. # # det ( A ) = 0 # # A has the LEFT null vector ( 1, 1, ..., 1 ). # # LAMBDA(I) = - ( I - 1 ) * ( ALPHA + I ). # # Left eigenvectors are # # V^J(I) = 1/COMB(N-1,I-1) * sum ( 0 <= K <= min ( I, J ) ) [ (-1)**K * # COMB(N-1-K,N-I) * COMB(J-1,K) * COMB(ALPHA+J-1+K, K ) # # For ALPHA = -2, ..., -2*(N-1), the matrix is defective with two or more # pairs of eigenvectors coalescing. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 January 2015 # # Author: # # John Burkardt # # Reference: # # Patricia Eberlein, # A Two-Parameter Test Matrix, # Mathematics of Computation, # Volume 18, 1964, pages 296-298. # # Joan Westlake, # Test Matrix A41, # A Handbook of Numerical Matrix Inversion and Solution of Linear Equations, # John Wiley, 1968. # # Parameters: # # Input, real ALPHA, the parameter. # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( [ n, n ] ) for i in range ( 0, n ): for j in range ( 0, n ): if ( j == i ): a[i,j] = - ( ( 2 * i + 1 ) * ( n - 1 ) + i * alpha - 2 * i * i ) elif ( j == i + 1 ): a[i,j] = ( i + 1 ) * ( n - i - 1 + alpha ) elif ( j == i - 1 ): a[i,j] = i * ( n - i ) return a def eberlein_determinant ( alpha, n ): #*****************************************************************************80 # ## EBERLEIN_DETERMINANT returns the determinant of the EBERLEIN matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real ALPHA, the scalar defining A. # A common value is 100.0. # # Input, integer N, the order of the matrix. # # Output, real DETERM, the determinant. # determ = 0.0 return determ def eberlein_determinant_test ( ): #*****************************************************************************80 # ## EBERLEIN_DETERMINANT_TEST tests EBERLEIN_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 January 2015 # # Author: # # John Burkardt # from eberlein import eberlein from r8mat_print import r8mat_print from r8_uniform_ab import r8_uniform_ab print '' print 'EBERLEIN_DETERMINANT_TEST' print ' EBERLEIN_DETERMINANT computes the determinant of the EBERLEIN matrix.' print '' m = 4 n = m r8_lo = -5.0 r8_hi = +5.0 seed = 123456789 alpha, seed = r8_uniform_ab ( r8_lo, r8_hi, seed ) a = eberlein ( alpha, n ) r8mat_print ( m, n, a, ' EBERLEIN matrix:' ) value = eberlein_determinant ( alpha, n ) print '' print ' Value = %g' % ( value ) print '' print 'EBERLEIN_DETERMINANT_TEST' print ' Normal end of execution.' return def eberlein_null_left ( m, n ): #*****************************************************************************80 # ## EBERLEIN_NULL_LEFT returns a left null vector of the EBERLEIN matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 07 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer M, N, the order of the matrix. # # Output, real X(M), the left null vector. # import numpy as np x = np.ones ( m ) return x def eberlein_null_left_test ( ): #*****************************************************************************80 # ## EBERLEIN_NULL_LEFT_TEST tests EBERLEIN_NULL_LEFT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 07 March 2015 # # Author: # # John Burkardt # from r8_uniform_ab import r8_uniform_ab from r8mat_is_null_left import r8mat_is_null_left from r8mat_print import r8mat_print from r8vec_print import r8vec_print print '' print 'EBERLEIN_NULL_LEFT_TEST' print ' EBERLEIN_NULL_LEFT returns a left null vector of the EBERLEIN matrix.' print '' m = 5 n = 5 r8_lo = -5.0 r8_hi = +5.0 seed = 123456789 alpha, seed = r8_uniform_ab ( r8_lo, r8_hi, seed ) a = eberlein ( alpha, n ) r8mat_print ( m, n, a, ' EBERLEIN matrix A:' ) x = eberlein_null_left ( m, n ) r8vec_print ( m, x, ' Left null vector X:' ) value = r8mat_is_null_left ( m, n, a, x ) print '' print ' ||x\'*A||/||x|| = %g' % ( value ) print '' print 'EBERLEIN_NULL_LEFT_TEST' print ' Normal end of execution.' return def eberlein_test ( ): #*****************************************************************************80 # ## EBERLEIN_TEST tests EBERLEIN. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 January 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print from r8_uniform_ab import r8_uniform_ab print '' print 'EBERLEIN_TEST' print ' EBERLEIN computes the EBERLEIN matrix.' m = 4 n = m alpha_lo = 1.0 alpha_hi = 100.0 seed = 123456789 alpha, seed = r8_uniform_ab ( alpha_lo, alpha_hi, seed ) a = eberlein ( alpha, n ) r8mat_print ( m, n, a, ' EBERLEIN matrix:' ) print '' print 'EBERLEIN_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) eberlein_test ( ) eberlein_determinant_test ( ) eberlein_null_left_test ( ) timestamp ( )