#! /usr/bin/env python # def eulerian ( m, n ): #*****************************************************************************80 # ## EULERIAN returns the EULERIAN matrix. # # Definition: # # A run in a permutation is a sequence of consecutive ascending values. # # E(I,J) is the number of permutations of I objects which contain # exactly J runs. # # Examples: # # N = 7 # # 1 0 0 0 0 0 0 # 1 1 0 0 0 0 0 # 1 4 1 0 0 0 0 # 1 11 11 1 0 0 0 # 1 26 66 26 1 0 0 # 1 57 302 302 57 1 0 # 1 120 1191 2416 1191 120 1 # # Recursion: # # E(I,J) = J * E(I-1,J) + (I-J+1) * E(I-1,J-1). # # Properties: # # A is generally not symmetric: A' /= A. # # A is integral: int ( A ) = A. # # A is nonnegative. # # A is unit lower triangular. # # det ( A ) = 1. # # A is unimodular. # # LAMBDA(1:N) = 1. # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 25 January 2015 # # Author: # # John Burkardt # # Reference: # # Dennis Stanton, Dennis White, # Constructive Combinatorics, # Springer Verlag, 1986. # # Parameters: # # Input, integer M, N, the number of rows and columns of A. # # Output, real A(M,N), the matrix. # import numpy as np a = np.zeros ( [ m, n ] ) a[0,0] = 1.0 for i in range ( 1, m ): a[i,0] = 1.0 for j in range ( 1, n ): a[i,j] = ( j + 1 ) * a[i-1,j] + ( i - j + 1 ) * a[i-1,j-1] return a def eulerian_determinant ( n ): #*****************************************************************************80 # ## EULERIAN_DETERMINANT returns the determinant of the EULERIAN matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 25 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real DETERM, the determinant. # determ = 1.0 return determ def eulerian_determinant_test ( ): #*****************************************************************************80 # ## EULERIAN_DETERMINANT_TEST tests EULERIAN_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 25 January 2015 # # Author: # # John Burkardt # from eulerian import eulerian from r8mat_print import r8mat_print print '' print 'EULERIAN_DETERMINANT_TEST' print ' EULERIAN_DETERMINANT computes the determinant of the EULERIAN matrix.' print '' m = 4 n = m a = eulerian ( m, n ) r8mat_print ( m, n, a, ' EULERIAN matrix:' ) value = eulerian_determinant ( n ) print '' print ' Value = %g' % ( value ) print '' print 'EULERIAN_DETERMINANT_TEST' print ' Normal end of execution.' return def eulerian_inverse ( n ): #*****************************************************************************80 # ## EULERIAN_INVERSE computes the inverse of the EULERIAN matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 25 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real A(N,N), the inverse of the Eulerian matrix. # import numpy as np a = np.zeros ( ( n, n ) ) # # Set up the Eulerian matrix. # b = eulerian ( n, n ) # # Compute the inverse A of a unit lower triangular matrix B. # for j in range ( 0, n ): for i in range ( 0, n ): if ( i == j ): a[i,j] = 1.0 elif ( j < i ): t = 0.0 for k in range ( j, i ): t = t + b[i,k] * a[k,j] a[i,j] = - t return a def eulerian_test ( ): #*****************************************************************************80 # ## EULERIAN_TEST tests EULERIAN. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 25 January 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'EULERIAN_TEST' print ' EULERIAN computes the EULERIAN matrix.' m = 4 n = m a = eulerian ( m, n ) r8mat_print ( m, n, a, ' EULERIAN matrix:' ) print '' print 'EULERIAN_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) eulerian_test ( ) timestamp ( )