#! /usr/bin/env python # def fibonacci1 ( n, f1, f2 ): #*****************************************************************************80 # ## FIBONACCI1 returns the FIBONACCI1 matrix. # # Example: # # N = 5 # F1 = 1, F2 = 2 # # 1 2 3 5 8 # 2 3 5 8 13 # 3 5 8 13 21 # 5 8 13 21 34 # 8 13 21 34 55 # # Properties: # # A is symmetric: A' = A. # # If F1 and F2 are integral, then so is A. # # If A is integral, then det ( A ) is integral, and # det ( A ) * inverse ( A ) is integral. # # A is a Hankel matrix: constant along anti-diagonals. # # If B is the Fibonacci iteration matrix: # # B * A(F1,F2) = A(F2,F2+F1) = A(F2,F3) # # and in general, # # B^N * A(F1,F2) = A(F(N+1),F(N+2)) # # For 2 < N, the matrix is singular, because row 3 is the sum # of row 1 and row 2. # # For 2 <= N, # rank ( A ) = 2 # # If N = 1, then # det ( A ) = 1 # else if N = 2 then # det ( A ) = -1 # else if 1 < N then # det ( A ) = 0 # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Input, real F1, F2, the first two elements of the sequence # that will generate the Fibonacci sequence. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( [ n, n ] ) a[0,0] = f1 if ( 1 < n ): a[1,0] = f2 a[0,1] = f2 fnm2 = f1 fnm1 = f2 fn = fnm1 + fnm2 for k in range ( 2, n + n - 1 ): i = min ( k, n - 1 ) j = max ( 0, k - n + 1 ) while ( 0 <= i and j < n ): a[i,j] = fn i = i - 1 j = j + 1 fnm2 = fnm1 fnm1 = fn fn = fnm1 + fnm2 return a def fibonacci1_determinant ( n, f1, f2 ): #*****************************************************************************80 # ## FIBONACCI1_DETERMINANT returns the determinant of the FIBONACCI1 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Input, real F1, F2, the first two elements of the sequence # that will generate the Fibonacci sequence. # # Output, real DETERM, the determinant. # if ( n == 1 ): determ = 1.0 elif ( n == 2 ): determ = -1.0 else: determ = 0.0 return determ def fibonacci1_determinant_test ( ): #*****************************************************************************80 # ## FIBONACCI1_DETERMINANT_TEST tests FIBONACCI1_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 January 2015 # # Author: # # John Burkardt # from fibonacci1 import fibonacci1 from r8_uniform_ab import r8_uniform_ab from r8mat_print import r8mat_print print '' print 'FIBONACCI1_DETERMINANT_TEST' print ' FIBONACCI1_DETERMINANT computes the determinant of the FIBONACCI1 matrix.' print '' m = 5 n = m f_lo = 1.0 f_hi = 10.0 seed = 123456789 f1, seed = r8_uniform_ab ( f_lo, f_hi, seed ) f2, seed = r8_uniform_ab ( f_lo, f_hi, seed ) a = fibonacci1 ( n, f1, f2 ) r8mat_print ( m, n, a, ' FIBONACCI1 matrix:' ) value = fibonacci1_determinant ( n, f1, f2 ) print '' print ' Value = %g' % ( value ) print '' print 'FIBONACCI1_DETERMINANT_TEST' print ' Normal end of execution.' return def fibonacci1_null_left ( m, n, f1, f2 ): #*****************************************************************************80 # ## FIBONACCI1_NULL_LEFT returns a left null vector of the FIBONACCI1 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer M, N, the order of the matrix. # # Input, real F1, F2, the first two elements of the sequence # that will generate the Fibonacci sequence. # # Output, real X(M), a null vector. # import numpy as np from sys import exit if ( m < 3 ): print '' print 'FIBONACCI1_NULL_LEFT - Fatal error!' print ' 3 <= M is required.' exit ( 'FIBONACCI1_NULL_LEFT - Fatal error!' ) x = np.zeros ( m ) x[m-3] = -1.0 x[m-2] = -1.0 x[m-1] = +1.0 return x def fibonacci1_null_right ( m, n, f1, f2 ): #*****************************************************************************80 # ## FIBONACCI1_NULL_RIGHT returns a right null vector of the FIBONACCI1 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 12 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer M, N, the order of the matrix. # # Input, real F1, F2, the first two elements of the sequence # that will generate the Fibonacci sequence. # # Output, real X(N), a null vector. # import numpy as np from sys import exit if ( n < 3 ): print '' print 'FIBONACCI1_NULL_RIGHT - Fatal error!' print ' 3 <= N is required.' exit ( 'FIBONACCI1_NULL_RIGHT - Fatal error!' ) x = np.zeros ( n ) x[n-3] = -1.0 x[n-2] = -1.0 x[n-1] = +1.0 return x def fibonacci1_test ( ): #*****************************************************************************80 # ## FIBONACCI1_TEST tests FIBONACCI1. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 January 2015 # # Author: # # John Burkardt # from r8_uniform_ab import r8_uniform_ab from r8mat_print import r8mat_print print '' print 'FIBONACCI1_TEST' print ' FIBONACCI1 computes the FIBONACCI1 matrix.' m = 5 n = m f_lo = 1.0 f_hi = 10.0 seed = 123456789 f1, seed = r8_uniform_ab ( f_lo, f_hi, seed ) f2, seed = r8_uniform_ab ( f_lo, f_hi, seed ) a = fibonacci1 ( n, f1, f2 ) r8mat_print ( m, n, a, ' FIBONACCI1 matrix:' ) print '' print 'FIBONACCI1_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) fibonacci1_test ( ) timestamp ( )