#! /usr/bin/env python # def fibonacci2 ( n ): #*****************************************************************************80 # ## FIBONACCI2 returns the FIBONACCI2 matrix. # # Example: # # N = 5 # # 0 1 0 0 0 # 1 1 0 0 0 # 0 1 1 0 0 # 0 0 1 1 0 # 0 0 0 1 1 # # Properties: # # A is generally not symmetric: A' /= A. # # A is tridiagonal. # # Because A is tridiagonal, it has property A (bipartite). # # A is banded, with bandwidth 3. # # A is integral: int ( A ) = A. # # A is a zero/one matrix. # # If N = 1 then # det ( A ) = 0 # else # det ( A ) = (-1)^(N-1) # # If 1 < N, then A is unimodular. # # For 2 <= N, A has the eigenvalues: # # PHI (once), # 1 (N-2) times, # 1-PHI (once). # # When applied to a Fibonacci1 matrix B, the Fibonacci2 matrix # A produces the "next" Fibonacci1 matrix C = A*B. # # Let PHI be the golden ratio (1+sqrt(5))/2. # # For 2 <= N, the eigenvalues and eigenvectors are: # # LAMBDA(1) = PHI, vector = (1,PHI,PHI^2,...PHI^(N-1)); # LAMBDA(2:N-1) = 1 vector = (0,0,0,...,0,1); # LAMBDA(N) = 1 - PHI. vector = ((-PHI)^(N-1),(-PHI)^(N-2),...,1) # # Note that there is only one eigenvector corresponding to 1. # Hence, for 3 < N, the matrix is defective. This fact means, # for instance, that the convergence of the eigenvector in the power # method will be very slow. # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 28 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( [ n, n ] ) for i in range ( 0, n ): for j in range ( 0, n ): if ( i == 0 ): if ( j == 1 ): a[i,j] = 1.0; else: if ( j == i - 1 or j == i ): a[i,j] = 1.0 return a def fibonacci2_condition ( n ): #*****************************************************************************80 # ## FIBONACCI2_CONDITION returns the L1 condition of the FIBONACCI2 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 08 April 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the L1 condition. # from sys import exit if ( n == 1 ): print '' print 'FIBONACCI2_CONDITION - Fatal error!' print ' The condition number is infinite for N=1' exit ( 'FIBONACCI2_CONDITION - Fatal error!' ) if ( n == 1 ): a_norm = 0.0 elif ( n == 2 ): a_norm = 2.0 else: a_norm = 3.0 b_norm = float ( n ) value = a_norm * b_norm; return value def fibonacci2_determinant ( n ): #*****************************************************************************80 # ## FIBONACCI2_DETERMINANT returns the determinant of the FIBONACCI2 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 28 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real DETERM, the determinant. # if ( n == 1 ): determ = 0.0 else: determ = -1.0 return determ def fibonacci2_determinant_test ( ): #*****************************************************************************80 # ## FIBONACCI2_DETERMINANT_TEST tests FIBONACCI2_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 28 January 2015 # # Author: # # John Burkardt # from fibonacci2 import fibonacci2 from r8mat_print import r8mat_print print '' print 'FIBONACCI2_DETERMINANT_TEST' print ' FIBONACCI2_DETERMINANT computes the determinant of the FIBONACCI2 matrix.' print '' m = 5 n = m a = fibonacci2 ( n ) r8mat_print ( m, n, a, ' FIBONACCI2 matrix:' ) value = fibonacci2_determinant ( n ) print '' print ' Value = %g' % ( value ) print '' print 'FIBONACCI2_DETERMINANT_TEST' print ' Normal end of execution.' return def fibonacci2_inverse ( n ): #*****************************************************************************80 # ## FIBONACCI2_INVERSE returns the inverse of the FIBONACCI2 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 25 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np from sys import exit a = np.zeros ( ( n, n ) ) if ( n == 1 ): print '' print 'FIBONACCI2_INVERSE - Fatal error!' print ' The inverse does not exist for N = 1.' exit ( 'FIBONACCI2_INVERSE - Fatal error!' ) # # Column 1. # j = 0 s = -1.0 for i in range ( 0, n ): a[i,j] = s s = -s # # Column 2 # j = 1 a[0,j] = 1.0 # # Columns 3:N # for j in range ( 2, n ): s = 1.0 for i in range ( j, n ): a[i,j] = s s = -s return a def fibonacci2_test ( ): #*****************************************************************************80 # ## FIBONACCI2_TEST tests FIBONACCI2. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 28 January 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'FIBONACCI2_TEST' print ' FIBONACCI2 computes the FIBONACCI2 matrix.' m = 5 n = m a = fibonacci2 ( n ) r8mat_print ( m, n, a, ' FIBONACCI2 matrix:' ) print '' print 'FIBONACCI2_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) fibonacci2_test ( ) timestamp ( )