#! /usr/bin/env python # def fibonacci3 ( n ): #*****************************************************************************80 # ## FIBONACCI3 returns the FIBONACCI3 matrix. # # Example: # # N = 5 # # 1 -1 0 0 0 # 1 1 -1 0 0 # 0 1 1 -1 0 # 0 0 1 1 -1 # 0 0 0 1 1 # # Properties: # # A is generally not symmetric: A' /= A. # # A is tridiagonal. # # Because A is tridiagonal, it has property A (bipartite). # # A is banded, with bandwidth 3. # # A is integral: int ( A ) = A. # # The determinant of A is the Fibonacci number F(N+1). # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 29 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( [ n, n ] ) for i in range ( 1, n ): a[i,i-1] = 1.0 for i in range ( 0, n ): a[i,i] = 1.0 for i in range ( 0, n - 1 ): a[i,i+1] = -1.0 return a def fibonacci3_determinant ( n ): #*****************************************************************************80 # ## FIBONACCI3_DETERMINANT returns the determinant of the FIBONACCI3 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 29 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real DETERM, the determinant. # f1 = 0 f2 = 0 f3 = 1 for i in range ( 0, n ): f1 = f2 f2 = f3 f3 = f1 + f2 value = f3 return value def fibonacci3_determinant_test ( ): #*****************************************************************************80 # ## FIBONACCI3_DETERMINANT_TEST tests FIBONACCI3_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 29 January 2015 # # Author: # # John Burkardt # from fibonacci3 import fibonacci3 from r8mat_print import r8mat_print print '' print 'FIBONACCI3_DETERMINANT_TEST' print ' FIBONACCI3_DETERMINANT computes the determinant of the FIBONACCI3 matrix.' print '' m = 5 n = m a = fibonacci3 ( n ) r8mat_print ( m, n, a, ' FIBONACCI3 matrix:' ) value = fibonacci3_determinant ( n ) print '' print ' Value = %g' % ( value ) print '' print 'FIBONACCI3_DETERMINANT_TEST' print ' Normal end of execution.' return def fibonacci3_inverse ( n ): #*****************************************************************************80 # ## FIBONACCI3_INVERSE returns the inverse of the FIBONACCI3 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 March 2015 # # Author: # # John Burkardt # # Reference: # # CM daFonseca, J Petronilho, # Explicit Inverses of Some Tridiagonal Matrices, # Linear Algebra and Its Applications, # Volume 325, 2001, pages 7-21. # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real A(N,N), the inverse of the matrix. # import numpy as np from r8_mop import r8_mop a = np.zeros ( ( n, n ) ) d = np.zeros ( n ) d[n-1] = 1.0 for i in range ( n - 2, -1, -1 ): d[i] = 1.0 + 1.0 / d[i+1] for i in range ( 0, n ): for j in range ( 0, i + 1 ): p1 = 1.0 for k in range ( i + 1, n ): p1 = p1 * d[k] p2 = 1.0 for k in range ( 0, n - j ): p2 = p2 * d[k] a[i,j] = r8_mop ( i + j ) * p1 / p2 for j in range ( i + 1, n ): p1 = 1.0 for k in range ( j + 1, n ): p1 = p1 * d[k] p2 = 1.0 for k in range ( 0, n - i ): p2 = p2 * d[k] a[i,j] = p1 / p2 return a def fibonacci3_test ( ): #*****************************************************************************80 # ## FIBONACCI3_TEST tests FIBONACCI3. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 29 January 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'FIBONACCI3_TEST' print ' FIBONACCI3 computes the FIBONACCI3 matrix.' m = 5 n = m a = fibonacci3 ( n ) r8mat_print ( m, n, a, ' FIBONACCI3 matrix:' ) print '' print 'FIBONACCI3_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) fibonacci3_test ( ) timestamp ( )