#! /usr/bin/env python # def fiedler ( m, n, x ): #*****************************************************************************80 # ## FIEDLER returns the FIEDLER matrix. # # Formula: # # A(I,J) = abs ( X(I) - X(J) ) # # Example: # # M = 5, N = 5, X = ( 1, 2, 3, 5, 9 ) # # 0 1 2 4 8 # 1 0 1 3 7 # 2 1 0 2 6 # 4 3 2 0 4 # 8 7 6 4 0 # # Rectangular Properties: # # A has a zero diagonal. # # Square Properties: # # A is symmetric: A' = A. # # Because A is symmetric, it is normal. # # Because A is normal, it is diagonalizable. # # det ( A ) = (-1)^N * 2^(N-2) # * ( X(1) - X(N) ) * product ( 2 <= I <= N ) ( X(I) - X(I-1) ). # # A is nonsingular if the X(I) are distinct. # # The inverse is cyclic tridiagonal; that is, it is tridiagonal, except # for nonzero (1,N) and (N,1) entries. # # A has a dominant positive eigenvalue, and all others are negative. # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 12 October 2007 # # Author: # # John Burkardt # # Reference: # # Gabor Szego, # Solution to problem 3705, # American Mathematical Monthly, # Volume 43, Number 4, 1936, pages 246-259. # # John Todd, # Example A14, # Basic Numerical Mathematics, # Volume 2: Numerical Algebra, # Academic Press, 1977, page 159. # # Parameters: # # Input, integer M, N, the number of rows and columns of A. # # Input, real X( max (M,N) ), the values that define A. # # Output, real A(M,N), the matrix. # import numpy as np a = np.zeros ( [ m, n ] ) for j in range ( 0, n ): for i in range ( 0, m ): a[i,j] = np.abs ( x[i] - x[j] ) return a def fiedler_determinant ( n, x ): #*****************************************************************************80 # ## FIEDLER_DETERMINANT computes the determinant of the FIEDLER matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 31 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Input, real X(N), the fiedler elements. # # Output, real DETERM, the determinant. # determ = 2.0 ** ( n - 2 ) if ( ( n % 2 ) == 1 ): determ = - determ for i in range ( 0, n - 1 ): for j in range ( i + 1, n ): if ( x[j] < x[i] ): t = x[j] x[j] = x[i] x[i] = t determ = - determ determ = determ * ( x[n-1] - x[0] ) for i in range ( 1, n ): determ = determ * ( x[i] - x[i-1] ) return determ def fiedler_determinant_test ( ): #*****************************************************************************80 # ## FIEDLER_DETERMINANT_TEST tests FIEDLER_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 31 January 2015 # # Author: # # John Burkardt # from fiedler import fiedler from r8vec_uniform_ab import r8vec_uniform_ab from r8mat_print import r8mat_print print '' print 'FIEDLER_DETERMINANT_TEST' print ' FIEDLER_DETERMINANT computes the FIEDLER determinant.' m = 5 n = m x_lo = -5.0 x_hi = +5.0 seed = 123456789 x, seed = r8vec_uniform_ab ( n, x_lo, x_hi, seed ) a = fiedler ( m, n, x ) r8mat_print ( m, n, a, ' FIEDLER matrix:' ) value = fiedler_determinant ( n, x ) print '' print ' Value = %g' % ( value ) print '' print 'FIEDLER_DETERMINANT_TEST' print ' Normal end of execution.' return def fiedler_inverse ( n, x ): #*****************************************************************************80 # ## FIEDLER_INVERSE returns the inverse of the FIEDLER matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 28 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Input, real X(N), the values that define A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) d1 = 0.5 / ( x[n-1] - x[0] ) d2 = 0.5 / ( x[0] - x[1] ) a[0,n-1] = + d1 a[0,0] = + d1 + d2 a[0,1] = - d2 for i in range ( 1, n - 1 ): d1 = 0.5 / ( x[i-1] - x[i] ) d2 = 0.5 / ( x[i] - x[i+1] ) a[i,i-1] = - d1 a[i,i] = + d1 + d2 a[i,i+1] = - d2 d1 = 0.5 / ( x[n-2] - x[n-1] ) d2 = 0.5 / ( x[n-1] - x[0] ) a[n-1,n-2] = - d1 a[n-1,n-1] = d1 + d2 a[n-1,0] = + d2 return a def fiedler_test ( ): #*****************************************************************************80 # ## FIEDLER_TEST tests FIEDLER. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 31 January 2015 # # Author: # # John Burkardt # from r8vec_uniform_ab import r8vec_uniform_ab from r8mat_print import r8mat_print print '' print 'FIEDLER_TEST' print ' FIEDLER computes the FIEDLER matrix.' m = 5 n = m x_lo = -5.0 x_hi = +5.0 seed = 123456789 x, seed = r8vec_uniform_ab ( n, x_lo, x_hi, seed ) a = fiedler ( m, n, x ) r8mat_print ( m, n, a, ' FIEDLER matrix:' ) print '' print 'FIEDLER_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) fiedler_test ( ) timestamp ( )