#! /usr/bin/env python # def forsythe ( alpha, beta, n ): #*****************************************************************************80 # ## FORSYTHE returns the FORSYTHE matrix. # # Discussion: # # The Forsythe matrix represents a Jordan canonical matrix, perturbed # by a rank one update. # # Formula: # # If ( I = J ) # A(I,J) = BETA # else if ( J = I+1 ) # A(I,J) = 1 # else if ( I = N and J = 1 ) then # A(I,J) = ALPHA # else # A(I,J) = 0 # # Example: # # ALPHA = 2, BETA = 3, N = 5 # # 3 1 0 0 0 # 0 3 1 0 0 # 0 0 3 1 0 # 0 0 0 3 1 # 2 0 0 0 3 # # Properties: # # A is generally not symmetric: A' /= A. # # A is Toeplitz: constant along diagonals. # # A is persymmetric: A(I,J) = A(N+1-J,N+1-I). # # The characteristic equation of A is # # ( BETA - LAMBDA )^N - (-1)^N*ALPHA = 0 # # The eigenvalues of A are # # LAMBDA(I) = BETA # + abs ( ALPHA )^1/N * exp ( 2 * I * PI * sqrt ( - 1 ) / N ) # # Gregory and Karney consider the special case where BETA is 0, # and ALPHA is a "small" value. In that case, the characteristic # equation is LAMBDA^N - ALPHA = 0, and the eigenvalues are the # N-th root of ALPHA times the N roots of unity. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 08 October 2007 # # Author: # # John Burkardt # # Reference: # # Robert Gregory, David Karney, # Example 5.22, # A Collection of Matrices for Testing Computational Algorithms, # Wiley, New York, 1969, page 103, # LC: QA263.G68. # # Parameters: # # Input, real ALPHA, BETA, define the matrix. A typical # value of ALPHA is the square root of the machine precision; a typical # value of BETA is 0.0. # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): if ( j == i ): a[i,j] = beta elif ( j == i + 1 ): a[i,j] = 1.0 elif ( i == n - 1 and j == 0 ): a[i,j] = alpha return a def forsythe_determinant ( alpha, beta, n ): #*****************************************************************************80 # ## FORSYTHE_DETERMINANT computes the determinant of the FORSYTHE matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 04 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real ALPHA, BETA, parameters that define the matrix. # # Input, integer N, the order of the matrix. # # Output, real VALUE, the determinant. # from r8_mop import r8_mop value = r8_mop ( n - 1 ) * alpha + beta ** n return value def forsythe_determinant_test ( ): #*****************************************************************************80 # ## FORSYTHE_DETERMINANT_TEST tests FORSYTHE_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 04 February 2015 # # Author: # # John Burkardt # from forsythe import forsythe from r8_uniform_ab import r8_uniform_ab from r8mat_print import r8mat_print print '' print 'FORSYTHE_DETERMINANT_TEST' print ' FORSYTHE_DETERMINANT computes the FORSYTHE determinant.' seed = 123456789 n = 5 r8_lo = -5.0 r8_hi = +5.0 alpha, seed = r8_uniform_ab ( r8_lo, r8_hi, seed ) beta, seed = r8_uniform_ab ( r8_lo, r8_hi, seed ) a = forsythe ( alpha, beta, n ) r8mat_print ( n, n, a, ' FORSYTHE matrix:' ) value = forsythe_determinant ( alpha, beta, n ) print '' print ' Value = %g' % ( value ) print '' print 'FORSYTHE_DETERMINANT_TEST' print ' Normal end of execution.' return def forsythe_inverse ( alpha, beta, n ): #*****************************************************************************80 # ## FORSYTHE_INVERSE returns the inverse of the Forsythe matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 March 2015 # # Author: # # John Burkardt # # Reference: # # Robert Gregory, David Karney, # A Collection of Matrices for Testing Computational Algorithms, # Wiley, 1969, # ISBN: 0882756494, # LC: QA263.G68. # # Parameters: # # Input, real ALPHA, BETA, define the matrix. # The Forsythe matrix does not have an inverse if both ALPHA and BETA are zero. # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) if ( beta == 0.0 and alpha == 0.0 ): fprintf ( 1, '\n' ); fprintf ( 1, 'FORSYTHE_INVERSE - Fatal error!\n' ); fprintf ( 1, ' The Forsythe matrix is not invertible if\n' ); fprintf ( 1, ' both ALPHA and BETA are 0.\n' ); error ( 'FORSYTHE_INVERSE - Fatal error!' ); elif ( beta == 0.0 ): for j in range ( 0, n ): for i in range ( 0, n ): if ( j == n - 1 ): a[i,j] = 1.0 / alpha elif ( j == i - 1 ): a[i,j] = 1.0 # # Set up the original Jordan matrix as B. # else: # # Compute inverse of unperturbed Jordan matrix. # for j in range ( 0, n ): for i in range ( 0, n ): if ( i <= j ): a[i,j] = - ( - 1.0 / beta ) ** ( j + 1 - i ) # # Add rank one perturbation. # z = - 1.0 / beta for j in range ( 0, n ): for i in range ( 0, n ): a[i,j] = a[i,j] - alpha * z ** ( n + 1 + j - i ) \ / ( 1.0 - alpha * z ** n ) return a def forsythe_test ( ): #*****************************************************************************80 # ## FORSYTHE_TEST tests FORSYTHE. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 04 February 2015 # # Author: # # John Burkardt # from r8_uniform_ab import r8_uniform_ab from r8mat_print import r8mat_print print '' print 'FORSYTHE_TEST' print ' FORSYTHE computes the FORSYTHE matrix.' seed = 123456789 n = 5 r8_lo = -5.0 r8_hi = +5.0 alpha, seed = r8_uniform_ab ( r8_lo, r8_hi, seed ) beta, seed = r8_uniform_ab ( r8_lo, r8_hi, seed ) a = forsythe ( alpha, beta, n ) r8mat_print ( n, n, a, ' FORSYTHE matrix:' ) print '' print 'FORSYTHE_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) forsythe_test ( ) timestamp ( )