#! /usr/bin/env python # def fourier_cosine ( n ): #*****************************************************************************80 # ## FOURIER_COSINE returns the discrete Fourier Cosine Transform matrix. # # Example: # # N = 5 # # 0.447214 0.447214 0.447214 0.447214 0.447214 # 0.601501 0.371748 0.000000 -0.371748 -0.601501 # 0.511667 -0.195440 -0.632456 -0.195439 0.511667 # 0.371748 -0.601501 0.000000 0.601501 -0.371748 # 0.195439 -0.511667 0.632456 -0.511668 0.195439 # # Properties: # # A * A' = I. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 08 October 2007 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for j in range ( 0, n ): a[0,j] = 1.0 / np.sqrt ( float ( n ) ) for i in range ( 1, n ) : for j in range ( 0, n ): angle = float ( i ) * float ( 2 * j + 1 ) * np.pi / float ( 2 * n ) a[i,j] = np.sqrt ( 2.0 ) * np.cos ( angle ) / np.sqrt ( float ( n ) ) return a def fourier_cosine_determinant ( n ): #*****************************************************************************80 # ## FOURIER_COSINE_DETERMINANT returns the determinant of the FOURIER_COSINE matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 04 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real DETERM, the determinant. # if ( ( n % 2 ) == 1 ): value = + 1.0 else: value = -1.0 return value def fourier_cosine_determinant_test ( ): #*****************************************************************************80 # ## FOURIER_COSINE_DETERMINANT_TEST tests FOURIER_COSINE_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 04 February 2015 # # Author: # # John Burkardt # from fourier_cosine import fourier_cosine from r8mat_print import r8mat_print print '' print 'FOURIER_COSINE_DETERMINANT_TEST' print ' FOURIER_COSINE_DETERMINANT computes the determinant of the FOURIER_COSINE matrix.' print '' m = 5 n = m a = fourier_cosine ( n ) r8mat_print ( m, n, a, ' FOURIER_COSINE matrix:' ) value = fourier_cosine_determinant ( n ) print '' print ' Value = %g' % ( value ) print '' print 'FOURIER_COSINE_DETERMINANT_TEST' print ' Normal end of execution.' return def fourier_cosine_inverse ( n ): #*****************************************************************************80 # ## FOURIER_COSINE_INVERSE returns the inverse of the FOURIER_COSINE matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = fourier_cosine ( n ) a = np.transpose ( a ) return a def fourier_cosine_test ( ): #*****************************************************************************80 # ## FOURIER_COSINE_TEST tests FOURIER_COSINE. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 04 February 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'FOURIER_COSINE_TEST' print ' FOURIER_COSINE computes the FOURIER_COSINE matrix.' m = 5 n = m a = fourier_cosine ( n ) r8mat_print ( m, n, a, ' FOURIER_COSINE matrix:' ) print '' print 'FOURIER_COSINE_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) fourier_cosine_test ( ) timestamp ( )