#! /usr/bin/env python # def fourier_sine ( n ): #*****************************************************************************80 # ## FOURIER_SINE returns the FOURIER_SINE matrix. # # Discussion: # # This is the discrete Fourier Sine Transform matrix. # # This matrix is occasionally known as the "Newman" matrix. # # Formula: # # A(I,J) = sqrt ( 2 / (N+1) ) * SIN ( I * J * PI / (N+1) ) # # Example: # # N = 5 # # 0.288675 0.5 0.577350 0.5 0.288675 # 0.5 0.5 0.0 -0.5 -0.5 # 0.577350 0.0 -0.577350 0.0 0.577350 # 0.5 -0.5 0.0 0.5 -0.5 # 0.288675 -0.5 0.577350 -0.5 0.288675 # # Properties: # # A is symmetric: A' = A. # # Because A is symmetric, it is normal. # # Because A is normal, it is diagonalizable. # # A is orthogonal: A' * A = A * A' = I. # # A is involutional: A * A = I. # # A is generally not positive definite. # # All eigenvalues of A have absolute value 1. # # A is the eigenvector matrix of the second difference matrix (-1,2,-1). # # A can be used to compute the Discrete Fourier Sine Transform of # a set of data X, # DFST ( X ) = A * X # A second multiplication by A recovers the original data. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 February 2015 # # Author: # # John Burkardt # # Reference: # # Robert Gregory, David Karney, # Example 3.11, # A Collection of Matrices for Testing Computational Algorithms, # Wiley, New York, 1969, page 41, # LC: QA263.G68. # # Nicholas Higham, Desmond Higham, # Large growth factors in Gaussian elimination with pivoting, # SIAM Journal on Matrix Analysis and Applications, # Volume 10, 1989, pages 155-164. # # Joan Westlake, # Test Matrix A7, # A Handbook of Numerical Matrix Inversion and Solution of Linear Equations, # John Wiley, 1968. # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) s = np.sqrt ( 2.0 / float ( n + 1 ) ) for i in range ( 0, n ): for j in range ( 0, n ): angle = float ( ( i + 1 ) * ( j + 1 ) ) * np.pi / float ( n + 1 ) a[i,j] = np.sin ( angle ) * s return a def fourier_sine_determinant ( n ): #*****************************************************************************80 # ## FOURIER_SINE_DETERMINANT returns the determinant of the FOURIER_SINE matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real DETERM, the determinant. # if ( ( n % 2 ) == 1 ): value = + 1.0 else: value = -1.0 return value def fourier_sine_determinant_test ( ): #*****************************************************************************80 # ## FOURIER_SINE_DETERMINANT_TEST tests FOURIER_SINE_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 February 2015 # # Author: # # John Burkardt # from fourier_sine import fourier_sine from r8mat_print import r8mat_print print '' print 'FOURIER_SINE_DETERMINANT_TEST' print ' FOURIER_SINE_DETERMINANT computes the determinant of the FOURIER_SINE matrix.' print '' m = 5 n = m a = fourier_sine ( n ) r8mat_print ( m, n, a, ' FOURIER_SINE matrix:' ) value = fourier_sine_determinant ( n ) print '' print ' Value = %g' % ( value ) print '' print 'FOURIER_SINE_DETERMINANT_TEST' print ' Normal end of execution.' return def fourier_sine_inverse ( n ): #*****************************************************************************80 # ## FOURIER_SINE_INVERSE returns the inverse of the FOURIER_SINE matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real A(N,N), the matrix. # a = fourier_sine ( n ) return a def fourier_sine_test ( ): #*****************************************************************************80 # ## FOURIER_SINE_TEST tests FOURIER_SINE. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 04 February 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'FOURIER_SINE_TEST' print ' FOURIER_SINE computes the FOURIER_SINE matrix.' m = 5 n = m a = fourier_sine ( n ) r8mat_print ( m, n, a, ' FOURIER_SINE matrix:' ) print '' print 'FOURIER_SINE_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) fourier_sine_test ( ) timestamp ( )