#! /usr/bin/env python # def frank ( n ): #*****************************************************************************80 # ## FRANK returns the FRANK matrix. # # Formula: # # if ( I <= J ) # A(I,J) = N+1-J # elseif ( J = I-1 ) # A(I,J) = N-J # else # A(I,J) = 0.0 # # Example: # # N = 5 # # 5 4 3 2 1 # 4 4 3 2 1 # . 3 3 2 1 # . . 2 2 1 # . . . 1 1 # # Properties: # # A is generally not symmetric: A' /= A. # # A is upper Hessenberg. # # A is integral: int ( A ) = A. # # det ( A ) = 1. # # A is unimodular. # # The eigenvalues of A are related to the zeros of the Hermite # polynomials. # # The eigenvalues of A are real and positive, and occur in reciprocal # pairs, LAMBDA and 1/LAMBDA. # # For N = 12, the eigenvalues of A range from 32.2 to 0.031, with # the smaller eigenvalues having a condition number of 10^7, # meaning that a change in the matrix of order 10^(-7) can # result in a change in the eigenvalue of order 1. The actual # eigenvalues are: # # 0.031028060644010 # 0.049507429185278 # 0.081227659240405 # 0.143646519769220 # 0.284749720558478 # 0.6435053190048555 # 1.55398870913210790 # 3.511855948580757194 # 6.961533085567122113 # 12.311077408868526120 # 20.198988645877079428 # 32.228891501572160750 # # If N is odd, 1 is an eigenvalue of A. # # The (N/2) smaller eigenvalues of A are ill-conditioned. # # For large N, the computation of the determinant of A # comes out very far from its correct value of 1. # # Simple linear systems: # x = (0,0,0,...,1), A*x = (1,1,1,...,1) # x = (1,1,1,...,1), A*x = n * ( (n+1)/2, (n+3)/2, (n+3)/2, ..., (n+3)/2) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 February 2015 # # Author: # # John Burkardt # # Reference: # # Patricia Eberlein, # A note on the matrices denoted by $B n$, # SIAM Journal on Applied Mathematics, # Volume 20, 1971, pages 87-92. # # Werner Frank, # Computing eigenvalues of complex matrices by determinant # evaluation, and by methods of Danilewski and Wielandt, # Journal of the Society for Industrial and Applied Mathematics, # Volume 6, 1958, pages 378-392. # # Gene Golub, James Wilkinson, # Ill-conditioned eigensystems and the computation of the Jordan # canonical form, # SIAM Review, # Volume 18, Number 4, 1976, pages 578-619. # # Robert Gregory, David Karney, # Example 5.14, # A Collection of Matrices for Testing Computational Algorithms, # Wiley, New York, 1969, page 92, # LC: QA263.G68. # # H Rutishauser, # On test matrices, # Programmation en Mathematiques # Numeriques, Editions Centre Nat. Recherche Sci., Paris, 165, # 1966, pages 349-365. Section 9. # # J M Varah, # A generalization of the Frank matrix, # SIAM Journal on Scientific and Statistical Computing, # Volume 7, Number 3, August 1986, pages 835-839. # # Joan Westlake, # Test Matrix A37, # A Handbook of Numerical Matrix Inversion and Solution of Linear Equations, # John Wiley, 1968. # # James Wilkinson, # Error analysis of floating-point computation, # Numerische Mathematik, # Volume 2, 1960, pages 319-340. # # James Wilkinson, # The Algebraic Eigenvalue Problem, # Oxford University Press, 1965, pages 92-93. # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): if ( i <= j ): a[i,j] = ( n - j ) elif ( j == i - 1 ): a[i,j] = ( n - j - 1 ) return a def frank_determinant ( n ): #*****************************************************************************80 # ## FRANK_DETERMINANT computes the determinant of the FRANK matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real DETERM, the determinant. # determ = 1.0 return determ def frank_determinant_test ( ): #*****************************************************************************80 # ## FRANK_DETERMINANT_TEST tests FRANK_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 February 2015 # # Author: # # John Burkardt # from frank import frank from r8mat_print import r8mat_print print '' print 'FRANK_DETERMINANT_TEST' print ' FRANK_DETERMINANT computes the FRANK determinant.' m = 4 n = 4 a = frank ( n ) r8mat_print ( m, n, a, ' FRANK matrix:' ) value = frank_determinant ( n ) print ' Value = %g' % ( value ) print '' print 'FRANK_DETERMINANT_TEST' print ' Normal end of execution.' return def frank_inverse ( n ): #*****************************************************************************80 # ## FRANK_INVERSE returns the inverse of the FRANK matrix. # # Formula: # # if ( I = J-1 ) # A(I,J) = -1 # elseif ( I = J ) # if ( I = 1 ) # A(I,J) = 1 # else # A(I,J) = N + 2 - I # elseif ( J < I ) # A(I,J) = - (N+1-I) * A(I-1,J) # else # A(I,J) = 0 # # Example: # # N = 5 # # 1 -1 0 0 0 # -4 5 -1 0 0 # 12 -15 4 -1 0 # -24 30 -8 3 -1 # 24 -30 8 -3 2 # # Properties: # # A is generally not symmetric: A' /= A. # # A is lower Hessenberg. # # det ( A ) = 1. # # A is unimodular. # # A is integral: int ( A ) = A. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): if ( i == j - 1 ): a[i,j] = - 1.0 elif ( i == j ): if ( i == 0 ): a[i,j] = 1.0 else: a[i,j] = float ( n + 1 - i ) elif ( j < i ): a[i,j] = - float ( n - i ) * a[i-1,j] return a def frank_rhs ( m, k ): #*****************************************************************************80 # ## FRANK_RHS returns the FRANK right hand side. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 04 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer M, the row dimension. # # Input, integer K, the column dimension ( should be 2). # # Output, real B(M,K), the right hand side matrix. # import numpy as np b = np.zeros ( ( m, k ) ) if ( 1 <= k ): for i in range ( 0, m ): b[i,0] = 1.0 if ( 2 <= k ): b[0,1] = float ( ( m * ( m + 1 ) ) // 2 ) for i in range ( 1, m ): b[i,1] = float ( ( ( m - i ) * ( m + 3 - i ) ) // 2 ) return b def frank_solution ( n, k ): #*****************************************************************************80 # ## FRANK_SOLUTION returns the FRANK solution matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 28 November 2007 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the row dimension. # # Input, integer K, the column dimension ( should be 2). # # Output, real X(N,K), the solution matrix. # import numpy as np x = np.zeros ( ( n, k ) ) if ( 1 <= k ): x[n-1,0] = 1.0 if ( 2 <= k ): for i in range ( 0, n ): x[i,1] = 1.0 return x def frank_test ( ): #*****************************************************************************80 # ## FRANK_TEST tests FRANK. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 04 March 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'FRANK_TEST' print ' FRANK computes the FRANK matrix.' m = 5 n = m a = frank ( n ) r8mat_print ( m, n, a, ' FRANK matrix:' ) print '' print 'FRANK_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) frank_test ( ) timestamp ( )