#! /usr/bin/env python # def gear ( ii, jj, n ): #*****************************************************************************80 # ## GEAR returns the Gear matrix. # # Formula: # # if ( I = 1 and J = abs ( II ) ) # A(I,J) = SIGN(II) # elseif ( I = N and J = N + 1 - abs ( JJ ) ) # A(I,J) = SIGN(JJ) # elseif ( I = J+1 or I = J-1 ) # A(I,J) = 1 # else # A(I,J) = 0 # # Common values for II and JJ are II = N, JJ=-N. # # Example: # # II = 5, JJ = - 5, N = 5 # # 0 1 0 0 1 # 1 0 1 0 0 # 0 1 0 1 0 # 0 0 1 0 1 # -1 0 0 1 0 # # Properties: # # A is generally not symmetric: A' /= A. # # A is integral: int ( A ) = A. # # A is border-banded. # # All eigenvalues are of the form 2*COS(ALPHA), and the eigenvectors # are of the form # # ( sin(W+ALPHA), sin(W+2*ALPHA), ..., sin(W+N*ALPHA) ). # # The values of ALPHA and W are given in the reference. A can have # double and triple eigenvalues. # # If II = N and JJ=-N, A is singular. # # A is defective. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 06 February 2015 # # Author: # # John Burkardt # # Reference: # # Charles Gear, # A simple set of test matrices for eigenvalue programs, # Mathematics of Computation, # Volume 23, 1969, pages 119-125. # # Parameters: # # Input, integer II, JJ, define the two special entries. # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np from i4_sign import i4_sign a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): if ( i == 0 and j + 1 == abs ( ii ) ): a[i,j] = i4_sign ( ii ) elif ( i == n - 1 and j == n - abs ( jj ) ): a[i,j] = i4_sign ( jj ) elif ( j == i - 1 or j == i + 1 ): a[i,j] = 1.0 return a def gear_determinant ( ii, jj, n ): #*****************************************************************************80 # ## GEAR_DETERMINANT computes the determinant of the GEAR matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 06 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer II, JJ, define the two special entries. # # Input, integer N, the order of the matrix. # # Output, real VALUE, the determinant. # import numpy as np lam = gear_eigenvalues ( ii, jj, n ) value = np.prod ( lam ) return value def gear_determinant_test ( ): #*****************************************************************************80 # ## GEAR_DETERMINANT_TEST tests GEAR_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 06 February 2015 # # Author: # # John Burkardt # from i4_uniform_ab import i4_uniform_ab from r8mat_print import r8mat_print print '' print 'GEAR_DETERMINANT_TEST' print ' GEAR_DETERMINANT computes the GEAR determinant.' m = 4 n = 4 i4_lo = -n i4_hi = +n seed = 123456789 ii, seed = i4_uniform_ab ( i4_lo, i4_hi, seed ) jj, seed = i4_uniform_ab ( i4_lo, i4_hi, seed ) a = gear ( ii, jj, n ) r8mat_print ( m, n, a, ' GEAR matrix:' ) value = gear_determinant ( ii, jj, n ) print ' Value = %g' % ( value ) print '' print 'GEAR_DETERMINANT_TEST' print ' Normal end of execution.' return def gear_eigenvalues ( ii, jj, n ): #*****************************************************************************80 # ## GEAR_EIGENVALUES returns the eigenvalues of the GEAR matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 06 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer II, JJ, define the two special entries. # # Input, integer N, the order of the matrix. # # Output, real LAM(N), the eigenvalues. # import numpy as np from i4_is_even import i4_is_even from i4_is_odd import i4_is_odd from i4_sign import i4_sign lam = np.zeros ( n ) r8_pi = 3.141592653589793 # # Separate the sign and value. # alpha = np.zeros ( n ) j = abs ( ii ) js = i4_sign ( ii ) k = abs ( jj ) ks = i4_sign ( jj ) if ( 0 < js and 0 < ks ): w = 0 phi = n - ( ( j + k ) // 2 ) for p in range ( 1, phi + 1 ): alpha[w] = 2 * p * r8_pi / float ( 2 * n + 2 - j - k ) w = w + 1 phi = ( ( j - 1 ) // 2 ) for p in range ( 1, phi + 1 ): alpha[w] = 2 * p * r8_pi / float ( j ) w = w + 1 phi = ( ( k - 1 ) // 2 ) for p in range ( 1, phi + 1 ): alpha[w] = 2 * p * r8_pi / float ( k ) w = w + 1 alpha[w] = 0.0 w = w + 1 if ( i4_is_even ( j ) & i4_is_even ( k ) ): alpha[w] = r8_pi w = w + 1 elif ( 0 < js and ks < 0 ): w = 0 phi = n + 1 - ( ( j + k + 1 ) // 2 ) for p in range ( 1, phi + 1 ): alpha[w] = ( 2 * p - 1 ) * r8_pi / float ( 2 * n + 2 - j - k ) w = w + 1 phi = ( ( j - 1 ) // 2 ) for p in range ( 1, phi + 1 ): alpha[w] = 2 * p * r8_pi / float ( j ) w = w + 1 phi = ( k // 2 ) for p in range ( 1, phi + 1 ): alpha[w] = ( 2 * p - 1 ) * r8_pi / float ( k ) w = w + 1 if ( i4_is_even ( j ) and i4_is_odd ( k ) ): alpha[w] = r8_pi w = w + 1 elif ( js < 0 and 0 < ks ): w = 0 phi = n + 1 - ( ( j + k + 1 ) // 2 ) for p in range ( 1, phi + 1 ): alpha[w] = ( 2 * p - 1 ) * r8_pi / float ( 2 * n + 2 - j - k ) w = w + 1 phi = ( j // 2 ) for p in range ( 1, phi + 1 ): alpha[w] = ( 2 * p - 1 ) * r8_pi / float ( j ) w = w + 1 phi = ( ( k - 1 ) // 2 ) for p in range ( 1, phi + 1 ): alpha[w] = 2 * p * r8_pi / float ( k ) w = w + 1 if ( i4_is_odd ( j ) and i4_is_even ( k ) ): alpha[w] = r8_pi w = w + 1 elif ( js < 0 and ks < 0 ): w = 0 phi = n - ( ( j + k ) // 2 ) for p in range ( 1, phi + 1 ): alpha[w] = 2 * p * r8_pi / float ( 2 * n + 2 - j - k ) w = w + 1 phi = ( j // 2 ) for p in range ( 1, phi + 1 ): alpha[w] = ( 2 * p - 1 ) * r8_pi / float ( j ) w = w + 1 phi = ( k // 2 ) for p in range ( 1, phi + 1 ): alpha[w] = ( 2 * p - 1 ) * r8_pi / float ( k ) w = w + 1 if ( i4_is_odd ( j ) and i4_is_odd ( k ) ): alpha[w] = r8_pi w = w + 1 for w in range ( 0, n ): lam[w] = 2.0 * np.cos ( alpha[w] ) return lam def gear_eigenvalues_test ( ): #*****************************************************************************80 # ## GEAR_EIGENVALUES_TEST tests GEAR_EIGENVALUES. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 06 February 2015 # # Author: # # John Burkardt # from gear import gear from i4_uniform_ab import i4_uniform_ab from r8mat_print import r8mat_print from r8vec_print import r8vec_print print '' print 'GEAR_EIGENVALUES_TEST' print ' GEAR_EIGENVALUES computes the GEAR eigenvalues.' m = 5 n = 5 i4_lo = -n i4_hi = +n seed = 123456789 ii, seed = i4_uniform_ab ( i4_lo, i4_hi, seed ) jj, seed = i4_uniform_ab ( i4_lo, i4_hi, seed ) a = gear ( ii, jj, n ) r8mat_print ( m, n, a, ' GEAR matrix:' ) lam = gear_eigenvalues ( ii, jj, n ) r8vec_print ( n, lam, ' GEAR eigenvalues:' ) print '' print 'GEAR_EIGENVALUES_TEST' print ' Normal end of execution.' return def gear_test ( ): #*****************************************************************************80 # ## GEAR_TEST tests GEAR. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 06 February 2015 # # Author: # # John Burkardt # from i4_uniform_ab import i4_uniform_ab from r8mat_print import r8mat_print print '' print 'GEAR_TEST' print ' GEAR computes the GEAR matrix.' m = 4 n = 4 i4_lo = -n i4_hi = +n seed = 123456789 ii, seed = i4_uniform_ab ( i4_lo, i4_hi, seed ) jj, seed = i4_uniform_ab ( i4_lo, i4_hi, seed ) a = gear ( ii, jj, n ) r8mat_print ( m, n, a, ' GEAR matrix:' ) print '' print 'GEAR_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) gear_test ( ) timestamp ( )