#! /usr/bin/env python # def givens ( m, n ): #*****************************************************************************80 # ## GIVENS returns the GIVENS matrix. # # Discussion: # # Note that this is NOT the "Givens rotation matrix". This # seems to be more commonly known as the Moler matrix% # # Formula: # # A(I,J) = 2 * min ( I, J ) - 1 # # Example: # # N = 5 # # 1 1 1 1 1 # 1 3 3 3 3 # 1 3 5 5 5 # 1 3 5 7 7 # 1 3 5 7 9 # # Rectangular Properties: # # A is integral: int ( A ) = A. # # Square Properties: # # A is positive definite. # # A is symmetric: A' = A. # # Because A is symmetric, it is normal. # # Because A is normal, it is diagonalizable. # # The inverse of A is tridiagonal. # # A has a simple Cholesky factorization. # # A has eigenvalues # # LAMBDA(I) = 0.5 * sec ( ( 2 * I - 1 ) * PI / ( 4 * N ) )^2 # # The condition number P(A) is approximately 16 N^2 / PI^2. # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 07 February 2015 # # Author: # # John Burkardt # # Reference: # # Morris Newman, John Todd, # Example A9, # The evaluation of matrix inversion programs, # Journal of the Society for Industrial and Applied Mathematics, # Volume 6, Number 4, pages 466-476, 1958. # # John Todd, # Example A9, # Basic Numerical Mathematics, Volume 2: Numerical Algebra, # Academic Press, New York, 1977, page 1. # # Joan Westlake, # Test Matrix A8, # A Handbook of Numerical Matrix Inversion and Solution of Linear Equations, # John Wiley, 1968. # # Parameters: # # Input, integer M, N, the number of rows and columns of A. # # Output, real A(M,N), the matrix. # import numpy as np a = np.zeros ( ( m, n ) ) for i in range ( 0, m ): for j in range ( 0, n ): a[i,j] = 2 * min ( i, j ) + 1 return a def givens_condition ( n ): #*****************************************************************************80 # ## GIVENS_CONDITION computes the L1 condition of the GIVENS matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 03 April 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the L1 condition. # import numpy as np a_norm = float ( n * n ) if ( n == 1 ): b_norm = 1.0 else: b_norm = 2.0 value = a_norm * b_norm return value def givens_determinant ( n ): #*****************************************************************************80 # ## GIVENS_DETERMINANT computes the determinant of the GIVENS matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 07 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the determinant. # import numpy as np r8_pi = 3.141592653589793 value = 1.0 for i in range ( 1, n + 1 ): angle = float ( 2 * i - 1 ) * r8_pi / float ( 4 * n ) value = value * 0.5 / ( np.cos ( angle ) ) ** 2 return value def givens_determinant_test ( ): #*****************************************************************************80 # ## GIVENS_DETERMINANT_TEST tests GIVENS_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 07 February 2015 # # Author: # # John Burkardt # from givens import givens from r8mat_print import r8mat_print print '' print 'GIVENS_DETERMINANT_TEST' print ' GIVENS_DETERMINANT computes the GIVENS determinant.' m = 5 n = m a = givens ( m, n ) r8mat_print ( m, n, a, ' GIVENS matrix:' ) value = givens_determinant ( n ) print ' Value = %g' % ( value ) print '' print 'GIVENS_DETERMINANT_TEST' print ' Normal end of execution.' return def givens_eigenvalues ( n ): #*****************************************************************************80 # ## GIVENS_EIGENVALUES returns the eigenvalues of the GIVENS matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real LAMBDA(N), the eigenvalues. # import numpy as np lam = np.zeros ( n ) for i in range ( 0, n ): angle = float ( 2 * i + 1 ) * np.pi / float ( 4 * n ) lam[i] = 0.5 / ( np.cos ( angle ) ) ** 2 return lam def givens_inverse ( n ): #*****************************************************************************80 # ## GIVENS_INVERSE returns the inverse of the GIVENS matrix. # # Formula: # # if ( I = J = 1 ) # A(I,J) = 1.5 # elseif ( I = J < N ) # A(I,J) = 1.0 # elseif ( I = J = N ) # A(I,J) = 0.5 # elseif ( J = I+1 or J = I-1 ) # A(I,J) = -0.5 # else # A(I,J) = 0 # # Example: # # N = 5 # # 3 -1 0 0 0 # -1 2 -1 0 0 # 1/2 * 0 -1 2 -1 0 # 0 0 -1 2 -1 # 0 0 0 -1 1 # # Properties: # # A is symmetric: A' = A. # # Because A is symmetric, it is normal. # # Because A is normal, it is diagonalizable. # # A is tridiagonal. # # Because A is tridiagonal, it has property A (bipartite). # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): if ( i == j ): if ( i == 0 ): a[i,j] = 1.5 elif ( i < n - 1 ): a[i,j] = 1.0 else: a[i,j] = 0.5 elif ( i == j + 1 ): a[i,j] = - 0.5 elif ( i == j - 1 ): a[i,j] = - 0.5 return a def givens_llt ( n ): #*****************************************************************************80 # ## GIVENS_LLT returns the Cholesky factor of the GIVENS matrix. # # Example: # # N = 5 # # 1 0 0 0 0 # 1 sqrt(2) 0 0 0 # 1 sqrt(2) sqrt(2) 0 0 # 1 sqrt(2) sqrt(2) sqrt(2) 0 # 1 sqrt(2) sqrt(2) sqrt(2) sqrt(2) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) j = 0 for i in range ( 0, n ): a[i,j] = 1.0 for j in range ( 1, n ): for i in range ( j, n ): a[i,j] = np.sqrt ( 2.0 ) return a def givens_plu ( n ): #*****************************************************************************80 # #% GIVENS_PLU returns the PLU factors of the GIVENS matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real P(N,N), L(N,N), U(N,N), the PLU factors. # import numpy as np p = np.zeros ( ( n, n ) ) for j in range ( 0, n ): p[j,j] = 1.0 l = np.zeros ( ( n, n ) ) for j in range ( 0, n ): for i in range ( j, n ): l[i,j] = 1.0 u = np.zeros ( ( n, n ) ) i = 0 for j in range ( 0, n ): u[i,j] = 1.0 for i in range ( 1, n ): for j in range ( i, n ): u[i,j] = 2.0 return p, l, u def givens_test ( ): #*****************************************************************************80 # ## GIVENS_TEST tests GIVENS. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 07 February 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'GIVENS_TEST' print ' GIVENS computes the GIVENS matrix.' m = 5 n = m a = givens ( m, n ) r8mat_print ( m, n, a, ' GIVENS matrix:' ) print '' print 'GIVENS_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) givens_test ( ) timestamp ( )