#! /usr/bin/env python # def gk316 ( n ): #*****************************************************************************80 # ## GK316 returns the GK316 matrix. # # Discussion: # # GK316 is a Gregory and Karney test matrix. # # Formula: # # if ( I == N ) # A(I,J) = J # elseif ( J == N ) # A(I,J) = I # elseif ( I == J ) # A(I,J) = 1.0 # else # A(I,J) = 0.0 # # Example: # # N = 5 # # 1 0 0 0 1 # 0 1 0 0 2 # 0 0 1 0 3 # 0 0 0 1 4 # 1 2 3 4 5 # # Properties: # # A is symmetric: A' = A. # # Because A is symmetric, it is normal. # # Because A is normal, it is diagonalizable. # # A has property A (the first set is 1:N-1, the second is just N). # # A is integral: int ( A ) = A. # # det ( A ) = - N * ( N + 1 ) * ( 2 * N - 5 ) / 6. # # N-2 eigenvalues are equal to 1, while the remaining eigenvalues # are the roots of X^2 - (N+1)*X - N*(N+1)*(2*N-5)/6 = 0. # # A is border-banded. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 March 2015 # # Author: # # John Burkardt # # Reference: # # Aegerter, # Construction of a Set of Test Matrices, # Communications of the ACM, # Volume 2, Number 8, 1959, pages 10-12. # # Robert Gregory, David Karney, # Example 3.16, Example 4.15, # A Collection of Matrices for Testing Computational Algorithms, # Wiley, New York, 1969, page 44, page 74, # LC: QA263.G68. # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): if ( i == n - 1 ): a[i,j] = float ( j + 1 ) elif ( j == n - 1 ): a[i,j] = float ( i + 1 ) elif ( i == j ): a[i,j] = 1.0 return a def gk316_determinant ( n ): #*****************************************************************************80 # ## GK316_DETERMINANT computes the determinant of the GK316 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 08 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the determinant. # value = - float ( n * ( n + 1 ) * ( 2 * n - 5 ) ) / 6.0 return value def gk316_determinant_test ( ): #*****************************************************************************80 # ## GK316_DETERMINANT_TEST tests GK316_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 08 February 2015 # # Author: # # John Burkardt # from gk316 import gk316 from r8mat_print import r8mat_print print '' print 'GK316_DETERMINANT_TEST' print ' GK316_DETERMINANT computes the GK316 determinant.' m = 5 n = m a = gk316 ( n ) r8mat_print ( m, n, a, ' GK316 matrix:' ) value = gk316_determinant ( n ) print ' Value = %g' % ( value ) print '' print 'GK316_DETERMINANT_TEST' print ' Normal end of execution.' return def gk316_inverse ( n ): #*****************************************************************************80 # ## GK316_INVERSE returns the inverse of the GK316 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) t = 6.0 / float ( n * ( n + 1 ) * ( 2 * n - 5 ) ) for i in range ( 0, n ): for j in range ( 0, n ): if ( i == j and i < n - 1 ): a[i,j] = 1.0 - t * float ( ( i + 1 ) * ( i + 1 ) ) elif ( i == j and i == n - 1 ): a[i,j] = - t elif ( i < n - 1 and j < n - 1 ): a[i,j] = - t * float ( ( i + 1 ) * ( j + 1 ) ) elif ( i == n - 1 ): a[i,j] = t * float ( j + 1 ) elif ( j == n - 1 ): a[i,j] = t * float ( i + 1 ) return a def gk316_test ( ): #*****************************************************************************80 # ## GK316_TEST tests GK316. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 08 February 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'GK316_TEST' print ' GK316 computes the GK316 matrix.' m = 5 n = m a = gk316 ( n ) r8mat_print ( m, n, a, ' GK316 matrix:' ) print '' print 'GK316_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) gk316_test ( ) timestamp ( )