#! /usr/bin/env python # def gk323 ( m, n ): #*****************************************************************************80 # ## GK323 returns the GK323 matrix, a Gregory and Karney test matrix. # # Discussion: # # This matrix is occasionally known as the "Todd" matrix. # # Formula: # # A(I,J) = abs ( I - J ) # # Example: # # N = 5 # # 0 1 2 3 4 # 1 0 1 2 3 # 2 1 0 1 2 # 3 2 1 0 1 # 4 3 2 1 0 # # Rectangular Properties: # # A is integral: int ( A ) = A. # # A is a special case of the Fiedler matrix. # # Square Properties: # # A is symmetric: A' = A. # # Because A is symmetric, it is normal. # # Because A is normal, it is diagonalizable. # # det ( A ) = (-1)^(N-1) * 2^(N-2) * ( N - 1 ). # # A has a dominant positive eigenvalue, and N-1 real negative eigenvalues. # # If N = 2 mod 4, then -1 is an eigenvalue, with an eigenvector # of the form ( 1, -1, -1, 1, 1, -1, -1, 1, ... ). # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 08 February 2015 # # Author: # # John Burkardt # # Reference: # # Robert Gregory, David Karney, # Example 3.23, # A Collection of Matrices for Testing Computational Algorithms, # Wiley, New York, 1969, page 51, # LC: QA263.G68. # # Parameters: # # Input, integer M, N, the number of rows and columns # of the matrix. # # Output, real A(M,N), the matrix. # import numpy as np a = np.zeros ( ( m, n ) ) for i in range ( 0, m ): for j in range ( 0, n ): a[i,j] = abs ( i - j ) return a def gk323_determinant ( n ): #*****************************************************************************80 # ## GK323_DETERMINANT computes the determinant of the GK323 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 08 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the determinant. # from r8_mop import r8_mop value = r8_mop ( n - 1 ) * 2.0 ** ( n - 2 ) * ( n - 1 ) return value def gk323_determinant_test ( ): #*****************************************************************************80 # ## GK323_DETERMINANT_TEST tests GK323_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 08 February 2015 # # Author: # # John Burkardt # from gk323 import gk323 from r8mat_print import r8mat_print print '' print 'GK323_DETERMINANT_TEST' print ' GK323_DETERMINANT computes the GK323 determinant.' m = 5 n = m a = gk323 ( m, n ) r8mat_print ( m, n, a, ' GK323 matrix:' ) value = gk323_determinant ( n ) print ' Value = %g' % ( value ) print '' print 'GK323_DETERMINANT_TEST' print ' Normal end of execution.' return def gk323_inverse ( n ): #*****************************************************************************80 # ## GK323_INVERSE returns the inverse of the GK323 matrix. # # Properties: # # A is symmetric: A' = A. # # Because A is symmetric, it is normal. # # Because A is normal, it is diagonalizable. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): if ( i == j ): if ( i == 0 or i == n - 1 ): a[i,j] = - 0.5 * float ( n - 2 ) / float ( n - 1 ) else: a[i,j] = - 1.0 elif ( i == j + 1 or i == j - 1 ): a[i,j] = 0.5 elif ( i == 0 and j == n - 1 ): a[i,j] = 0.5 / float ( n - 1 ) elif ( i == n - 1 and j == 0 ): a[i,j] = 0.5 / float ( n - 1 ) return a def gk323_test ( ): #*****************************************************************************80 # ## GK323_TEST tests GK323. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 08 February 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'GK323_TEST' print ' GK323 computes the GK323 matrix.' m = 5 n = m a = gk323 ( m, n ) r8mat_print ( m, n, a, ' GK323 matrix:' ) print '' print 'GK323_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) gk323_test ( ) timestamp ( )