#! /usr/bin/env python # def hankel_n ( n ): #*****************************************************************************80 # ## HANKEL_N returns the HANKEL_N matrix. # # Formula: # # A(I,J) = I+J-1 for I+J-1 <= N + 1 # = 0 otherwise # # Example: # # N = 5 # # 1 2 3 4 5 # 2 3 4 5 0 # 3 4 5 0 0 # 4 5 0 0 0 # 5 0 0 0 0 # # Properties: # # A is symmetric: A' = A. # # Because A is symmetric, it is normal. # # Because A is normal, it is diagonalizable. # # A is a Hankel matrix: constant along anti-diagonals. # # determinant ( A ) = (-1)^(N/2) * N^N # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 11 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( [ n, n ] ) for j in range ( 0, n ): for i in range ( 0, n - j ): a[i,j] = i + j + 1 for i in range ( n - j, n ): a[i,j] = 0.0 return a def hankel_n_condition ( n ): #*****************************************************************************80 # ## HANKEL_N_CONDITION returns the L1 condition of the HANKEL_N matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 30 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the L1 condition. # import numpy as np v = np.zeros ( n ) v[0] = 1.0 / float ( n ) for i in range ( 1, n ): for j in range ( 0, i ): v[i] = v[i] - ( n + j - i ) * v[j] v[i] = v[i] / n a_norm = float ( n * ( n + 1 ) ) / 2.0 b_norm = np.sum ( abs ( v ) ) value = a_norm * b_norm return value def hankel_n_determinant ( n ): #*****************************************************************************80 # ## HANKEL_N_DETERMINANT computes the determinant of the HANKEL_N matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 11 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real DETERM, the determinant. # from math import floor from r8_mop import r8_mop determ = r8_mop ( floor ( n / 2 ) ) * ( n ** n ) return determ def hankel_n_determinant_test ( ): #*****************************************************************************80 # ## HANKEL_N_DETERMINANT_TEST tests HANKEL_N_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 11 January 2015 # # Author: # # John Burkardt # from hankel_n import hankel_n from r8mat_print import r8mat_print print '' print 'HANKEL_N_DETERMINANT_TEST' print ' HANKEL_N_DETERMINANT computes the HANKEL_N determinant.' m = 5 n = m a = hankel_n ( n ) r8mat_print ( m, n, a, ' HANKEL_N matrix:' ) value = hankel_n_determinant ( n ) print '' print ' Value = %g' % ( value ) print '' print 'HANKEL_N_DETERMINANT_TEST' print ' Normal end of execution.' return def hankel_n_inverse ( n ): #*****************************************************************************80 # ## HANKEL_N_INVERSE returns the inverse of the HANKEL_N matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real A(N,N), the matrix. # import numpy as np v = np.zeros ( n ) v[0] = 1.0 / float ( n ) for i in range ( 1, n ): for j in range ( 0, i ): v[i] = v[i] - float ( n + j - i ) * v[j] v[i] = v[i] / float ( n ) a = np.zeros ( ( n, n ) ) for j in range ( 0, n ): for i in range ( n - 1 - j, n ): a[i,j] = v[i+j+1-n] return a def hankel_n_test ( ): #*****************************************************************************80 # ## HANKEL_N_TEST tests HANKEL_N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 11 January 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'HANKEL_N_TEST' print ' HANKEL_N computes the HANKEL_N matrix.' m = 5 n = m a = hankel_n ( n ) r8mat_print ( m, n, a, ' HANKEL_N matrix:' ) print '' print 'HANKEL_N_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) hankel_n_test ( ) timestamp ( )