#! /usr/bin/env python # def hanowa ( alpha, n ): #*****************************************************************************80 # ## HANOWA returns the Hanowa matrix. # # Formula: # # If ( I = J ) # A(I,J) = ALPHA # else if ( I <= N/2 and J = I+N/2 ) # A(I,J) = -I # else if ( N/2 < I and J = I-N/2 ) # A(I,J) = I-N/2 # else # A(I,J) = 0 # # Example: # # ALPHA = 17, N = 6 # # 17 0 0 -1 0 0 # 0 17 0 0 -2 0 # 0 0 17 0 0 -3 # 1 0 0 17 0 0 # 0 2 0 0 17 0 # 0 0 3 0 0 17 # # Properties: # # A is generally not symmetric: A' ~= A. # # A is nonsingular. # # A is antisymmetric: A' = -A. # # Because A is antisymmetric, it is normal. # # Because A is normal, it is diagonalizable. # # A has complex eigenvalues # # LAMBDA(2*I-1) = ALPHA + I * sqrt ( -1 ) # LAMBDA(2*I) = ALPHA - I * sqrt ( -1 ) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 10 February 2015 # # Author: # # John Burkardt # # Reference: # # E Hairer, SP Norsett, G Wanner, # Solving Ordinary Differential Equations I: Nonstiff Problems, # Springer Verlag, Berlin, 1987, pages 86-87. # # Parameters: # # Input, real ALPHA, the scalar defining the Hanowa matrix. A # typical value is -1.0. # # Input, integer N, the order of A. N must be even. # # Output, real A(N,N), the matrix. # import numpy as np from sys import exit a = np.zeros ( ( n, n ) ) if ( ( n % 2 ) != 0 ): print'' print 'HANOWA - Fatal error!' print ' Input N = %d' % ( n ) print ' but N must be a multiple of 2.' exit ( 'HANOWA - Fatal error!' ) for i in range ( 0, n ): for j in range ( 0, n ): if ( i == j ): a[i,j] = alpha elif ( i + 1 <= ( n // 2 ) and j == i + ( n // 2 ) ): a[i,j] = - i - 1 elif ( ( n // 2 ) < i + 1 and j == i - ( n // 2 ) ): a[i,j] = i + 1 - ( n // 2 ) return a def hanowa_determinant ( alpha, n ): #*****************************************************************************80 # ## HANOWA_DETERMINANT returns the determinant of the HANOWA matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 24 January 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real ALPHA, the scalar defining A. # A common value is -1. # # Input, integer N, the order of the matrix. N must be even. # # Output, real DETERM, the determinant. # from sys import exit if ( ( n % 2 ) != 0 ): print '' print 'HANOWA_DETERMINANT - Fatal error!' print ' Input N = %d' % ( n ) print ' but N must be a multiple of 2.' exit ( 'HANOWA_DETERMINANT - Fatal error!' ) determ = 1.0 ihi = ( n // 2 ) for i in range ( 1, ihi + 1 ): determ = determ * ( alpha * alpha + i * i ) return determ def hanowa_determinant_test ( ): #*****************************************************************************80 # ## HANOWA_DETERMINANT_TEST tests HANOWA_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 10 February 2015 # # Author: # # John Burkardt # from hanowa import hanowa from r8mat_print import r8mat_print from r8_uniform_ab import r8_uniform_ab print '' print 'HANOWA_DETERMINANT_TEST' print ' HANOWA_DETERMINANT computes the determinant of the HANOWA matrix.' print '' m = 4 n = m r8_lo = -5.0 r8_hi = +5.0 seed = 123456789 alpha, seed = r8_uniform_ab ( r8_lo, r8_hi, seed ) a = hanowa ( alpha, n ) r8mat_print ( m, n, a, ' HANOWA matrix:' ) value = hanowa_determinant ( alpha, n ) print '' print ' Value = %g' % ( value ) print '' print 'HANOWA_DETERMINANT_TEST' print ' Normal end of execution.' return def hanowa_inverse ( alpha, n ): #*****************************************************************************80 # ## HANOWA_INVERSE returns the inverse of the HANOWA matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real ALPHA, the scalar defining the Hanowa matrix. A # typical value is -1.0. # # Input, integer N, the order of A. N must be even. # # Output, real A(N,N), the matrix. # import numpy as np from sys import exit if ( ( n % 2 ) != 0 ): print '' print 'HANOWA_INVERSE - Fatal error!' print ' The matrix order N must be even.' exit ( 'HANOWA_INVERSE - Fatal error!' ) a = np.zeros ( ( n, n ) ) n2 = ( n // 2 ) for i in range ( 0, n2 ): ip1 = float ( i + 1 ) a[i, i] = alpha / ( alpha * alpha + ip1 * ip1 ) a[i+n2,i] = - ip1 / ( alpha * alpha + ip1 * ip1 ) a[i+n2,i+n2] = alpha / ( alpha * alpha + ip1 * ip1 ) a[i, i+n2] = + ip1 / ( alpha * alpha + ip1 * ip1 ) return a def hanowa_test ( ): #*****************************************************************************80 # ## HANOWA_TEST tests HANOWA. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 10 February 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print from r8_uniform_ab import r8_uniform_ab print '' print 'HANOWA_TEST' print ' HANOWA computes the HANOWA matrix.' m = 6 n = m r8_lo = -5.0 r8_hi = +5.0 seed = 123456789 alpha, seed = r8_uniform_ab ( r8_lo, r8_hi, seed ) a = hanowa ( alpha, n ) r8mat_print ( m, n, a, ' HANOWA matrix:' ) print '' print 'HANOWA_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) hanowa_test ( ) timestamp ( )