#! /usr/bin/env python # def harman ( ): #*****************************************************************************80 # ## HARMAN returns the Harman matrix. # # Formula: # # 1.00 0.85 0.81 0.86 0.47 0.40 0.30 0.38 # 0.85 1.00 0.88 0.83 0.38 0.33 0.28 0.41 # 0.81 0.88 1.00 0.80 0.38 0.32 0.24 0.34 # 0.86 0.83 0.80 1.00 0.44 0.33 0.33 0.36 # 0.47 0.38 0.38 0.44 1.00 0.76 0.73 0.63 # 0.40 0.33 0.32 0.33 0.76 1.00 0.58 0.58 # 0.30 0.28 0.24 0.33 0.73 0.58 1.00 0.54 # 0.38 0.41 0.34 0.36 0.63 0.58 0.54 1.00 # # Properties: # # A is symmetric. # # A is a correlation matrix for 8 physical variables measured # for 305 girls. # # The rows and columns of the matrix correspond to the variables # 1) height # 2) arm span # 3) length of forearm # 4) length of lower leg # 5) weight # 6) bitrochanteric diameter # 7) chest girth # 8) chest width # # The largest two eigenvalues are # # LAMBDA(1) = 4.67 # # with eigenvector # # V(1) = 0.40, 0.39, 0.38, 0.39, 0.35, 0.31, 0.29, 0.31 # # and # # LAMBDA(2)= 1.77 # # with eigevector # # V(2) = 0.28 0.33 0.34 0.30 -0.39, -0.40 -0.44 -0.31 # # The best rank 2 approximation to the matrix, in the least squares # sense, is # # [ V(1) V(2) ] * Diag ( LAMBDA(1), LAMBDA(2) ) * [ V(1) V(2) ]' # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 10 February 2015 # # Author: # # John Burkardt # # Reference: # # HH Harman, # Modern Factor Analysis, # The University of Chicago Press, 1960. # # Lawrence Huber, Jacqueline Meulman, Willem Heiser, # Two Purposes for Matrix Factorization: A Historical Appraisal, # SIAM Review, Volume 41 : number 1, pages 68-82. # # Parameters: # # Output, real A(8,8), the matrix. # import numpy as np a = np.array ( [ \ [ 1.00, 0.85, 0.81, 0.86, 0.47, 0.40, 0.30, 0.38 ], \ [ 0.85, 1.00, 0.88, 0.83, 0.38, 0.33, 0.28, 0.41 ], \ [ 0.81, 0.88, 1.00, 0.80, 0.38, 0.32, 0.24, 0.34 ], \ [ 0.86, 0.83, 0.80, 1.00, 0.44, 0.33, 0.33, 0.36 ], \ [ 0.47, 0.38, 0.38, 0.44, 1.00, 0.76, 0.73, 0.63 ], \ [ 0.40, 0.33, 0.32, 0.33, 0.76, 1.00, 0.58, 0.58 ], \ [ 0.30, 0.28, 0.24, 0.33, 0.73, 0.58, 1.00, 0.54 ], \ [ 0.38, 0.41, 0.34, 0.36, 0.63, 0.58, 0.54, 1.00 ] ]) return a def harman_condition ( ): #*****************************************************************************80 # ## HARMAN_CONDITION returns the L1 condition of the HARMAN matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 10 February 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real VALUE, the L1 condition number. # a_norm = 5.07; b_norm = 15.200976381839961; value = a_norm * b_norm; return value def harman_condition_test ( ): #*****************************************************************************80 # ## HARMAN_CONDITION_TEST tests HARMAN_CONDITION. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 10 February 2015 # # Author: # # John Burkardt # from harman import harman from r8mat_print import r8mat_print print '' print 'HARMAN_CONDITION_TEST' print ' HARMAN_CONDITION computes the condition of the HARMAN matrix.' print '' seed = 123456789 n = 8 a = harman ( ) r8mat_print ( n, n, a, ' HARMAN matrix:' ) value = harman_condition ( ) print '' print ' Value = %g' % ( value ) print '' print 'HARMAN_CONDITION_TEST' print ' Normal end of execution.' return def harman_determinant ( ): #*****************************************************************************80 # ## HARMAN_DETERMINANT computes the determinant of the HARMAN matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 10 February 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real VALUE, the determinant. # value = 9.547789295599994E-04 return value def harman_determinant_test ( ): #*****************************************************************************80 # ## HARMAN_DETERMINANT_TEST tests HARMAN_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 10 February 2015 # # Author: # # John Burkardt # from harman import harman from r8mat_print import r8mat_print print '' print 'HARMAN_DETERMINANT_TEST' print ' HARMAN_DETERMINANT computes the HARMAN determinant.' seed = 123456789 m = 8 n = 8 a = harman ( ) r8mat_print ( n, n, a, ' HARMAN matrix:' ) value = harman_determinant ( ) print ' Value = %g' % ( value ) print '' print 'HARMAN_DETERMINANT_TEST' print ' Normal end of execution.' return def harman_inverse ( ): #*****************************************************************************80 # ## HARMAN_INVERSE returns the inverse of the HARMAN matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 March 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real A(8,8), the matrix. # import numpy as np # # Note that the matrix entries are listed by row. # a = np.array ( [ \ [ 5.505750442924552, -2.024827472733320, \ -0.525564377998213, -2.414725599885703, \ -0.742871704140835, -0.432339085897328, \ 0.506363394364808, 0.231316810459756 ], \ [ -2.024827472733320, 6.632253606390529, \ -3.266421707396942, -1.157009948040102, \ 0.941928425100928, 0.010152122779319, \ -0.318255180872113, -0.850127918526706 ], \ [ -0.525564377998213, -3.266421707396943, \ 4.945029645612116, -0.799896971199349, \ -0.384019974978888, -0.082141525217929, \ 0.342191583208235, 0.250391407726364 ], \ [ -2.414725599885702, -1.157009948040101, \ -0.799896971199349, 4.769523661962869, \ -0.343306754780455, 0.462478615948815, \ -0.415704081428472, 0.119432120786903 ], \ [ -0.742871704140835, 0.941928425100928, \ -0.384019974978887, -0.343306754780455, \ 3.941357428629264, -1.549806320843210, \ -1.467270532044103, -0.641583610147637 ], \ [ -0.432339085897328, 0.010152122779319, \ -0.082141525217929, 0.462478615948815, \ -1.549806320843210, 2.524233450449795, \ -0.122867685019045, -0.399766570085388 ], \ [ 0.506363394364808, -0.318255180872113, \ 0.342191583208235, -0.415704081428472, \ -1.467270532044103, -0.122867685019045, \ 2.276170982094793, -0.262113772509967 ], \ [ 0.231316810459756, -0.850127918526706, \ 0.250391407726364, 0.119432120786903, \ -0.641583610147637, -0.399766570085388, \ -0.262113772509967, 1.910127138708912 ] ] ) return a def harman_test ( ): #*****************************************************************************80 # ## HARMAN_TEST tests HARMAN. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 10 February 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'HARMAN_TEST' print ' HARMAN computes the HARMAN matrix.' n = 8 a = harman ( ) r8mat_print ( n, n, a, ' HARMAN matrix:' ) print '' print 'HARMAN_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) harman_test ( ) timestamp ( )