#! /usr/bin/env python # def hartley ( n ): #*****************************************************************************80 # ## HARTLEY returns the HARTLEY matrix. # # Formula: # # A(I,J) = SIN ( 2*PI*(i-1)*(j-1)/N ) + COS( 2*PI*(i-1)*(j-1)/N ) # # Example: # # N = 5 # # 1.0000 1.0000 1.0000 1.0000 1.0000 # 1.0000 1.2601 -0.2212 -1.3968 -0.6420 # 1.0000 -0.2212 -0.6420 1.2601 -1.3968 # 1.0000 -1.3968 1.2601 -0.6420 -0.2212 # 1.0000 -0.6420 -1.3968 -0.2212 1.2601 # # Properties: # # A is symmetric: A' = A. # # Because A is symmetric, it is normal. # # Because A is normal, it is diagonalizable. # # A arises in the Hartley transform. # # A * A = N * I, in other words, A is "almost" involutional, # and inverse ( A ) = ( 1 / N ) * A. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 11 February 2015 # # Author: # # John Burkardt # # Reference: # # D Bini, P Favati, # On a matrix algebra related to the discrete Hartley transform, # SIAM Journal on Matrix Analysis and Applications, # Volume 14, 1993, pages 500-507. # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): angle = 2.0 * np.pi * float ( i * j ) / float ( n ) a[i,j] = np.sin ( angle ) + np.cos ( angle ) return a def hartley_condition ( n ): #*****************************************************************************80 # ## HARTLEY_CONDITION computes the L1 condition of the HARTLEY matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 05 April 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the L1 condition. # a_norm = ( float ) ( n ) b_norm = 1.0 value = a_norm * b_norm return value def hartley_determinant ( n ): #*****************************************************************************80 # ## HARTLEY_DETERMINANT computes the determinant of the HARTLEY matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 11 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real DETERM, the determinant. # from math import sqrt if ( ( n % 2 ) == 1 ): determ = sqrt ( float ( n ** n ) ) else: determ = - sqrt ( float ( n ** n ) ) return determ def hartley_determinant_test ( ): #*****************************************************************************80 # ## HARTLEY_DETERMINANT_TEST tests HARTLEY_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 11 February 2015 # # Author: # # John Burkardt # from hartley import hartley from r8mat_print import r8mat_print print '' print 'HARTLEY_DETERMINANT_TEST' print ' HARTLEY_DETERMINANT computes the HARTLEY determinant.' m = 5 n = m a = hartley ( n ) r8mat_print ( m, n, a, ' HARTLEY matrix:' ) value = hartley_determinant ( n ) print ' Value = %g' % ( d ) print '' print 'HARTLEY_DETERMINANT_TEST' print ' Normal end of execution.' return def hartley_inverse ( n ): #*****************************************************************************80 # ## HARTLEY_INVERSE returns the inverse of the HARTLEY matrix. # # Formula: # # A(I,J) = (1/N) * SIN ( 2*PI*(i-1)*(j-1)/N ) + COS( 2*PI*(i-1)*(j-1)/N ) # # Properties: # # A is symmetric: A' = A. # # Because A is symmetric, it is normal. # # Because A is normal, it is diagonalizable. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 March 2015 # # Author: # # John Burkardt # # Reference: # # D Bini, P Favati, # On a matrix algebra related to the discrete Hartley transform, # SIAM Journal on Matrix Analysis and Applications, # Volume 14, 1993, pages 500-507. # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): angle = 2.0 * np.pi * float ( i * j ) / float ( n ) a[i,j] = ( np.sin ( angle ) + np.cos ( angle ) ) / float ( n ) return a def hartley_test ( ): #*****************************************************************************80 # ## HARTLEY_TEST tests HARTLEY. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 11 February 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'HARTLEY_TEST' print ' HARTLEY computes the HARTLEY matrix.' m = 5 n = m a = hartley ( n ) r8mat_print ( m, n, a, ' HARTLEY matrix:' ) print '' print 'HARTLEY_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) hartley_test ( ) timestamp ( )