#! /usr/bin/env python # def helmert ( n ): #*****************************************************************************80 # ## HELMERT returns the HELMERT matrix. # # Formula: # # If I = 1 then # A(I,J) = 1 / sqrt ( N ) # else if J < I then # A(I,J) = 1 / sqrt ( I * ( I - 1 ) ) # else if J = I then # A(I,J) = (1-I) / sqrt ( I * ( I - 1 ) ) # else # A(I,J) = 0 # # Discussion: # # The matrix given above by Helmert is the classic example of # a family of matrices which are now called Helmertian or # Helmert matrices. # # A matrix is a (standard) Helmert matrix if it is orthogonal, # and the elements which are above the diagonal and below the # first row are zero. # # If the elements of the first row are all strictly positive, # then the matrix is a strictly Helmertian matrix. # # It is possible to require in addition that all elements below # the diagonal be strictly positive, but in the reference, this # condition is discarded as being cumbersome and not useful. # # A Helmert matrix can be regarded as a change of basis matrix # between a pair of orthonormal coordinate bases. The first row # gives the coordinates of the first new basis vector in the old # basis. Each later row describes combinations of (an increasingly # extensive set of) old basis vectors that constitute the new # basis vectors. # # Helmert matrices have important applications in statistics. # # Example: # # N = 5 # # 0.4472 0.4472 0.4472 0.4472 0.4472 # 0.7071 -0.7071 0 0 0 # 0.4082 0.4082 -0.8165 0 0 # 0.2887 0.2887 0.2887 -0.8660 0 # 0.2236 0.2236 0.2236 0.2236 -0.8944 # # Properties: # # A is generally not symmetric: A' ~= A. # # A is orthogonal: A' * A = A * A' = I. # # Because A is orthogonal, it is normal: A' * A = A * A'. # # A is not symmetric: A' ~= A. # # det ( A ) = (-1)^(N+1) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 11 February 2015 # # Author: # # John Burkardt # # Reference: # # HO Lancaster, # The Helmert Matrices, # American Mathematical Monthly, # Volume 72, 1965, pages 4-12. # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) # # A begins with the first row, diagonal, and lower triangle set to 1. # for i in range ( 0, n ): for j in range ( 0, n ): if ( i == 0 ): a[i,j] = 1.0 / np.sqrt ( n ) elif ( j < i ): a[i,j] = 1.0 / np.sqrt ( float ( i * ( i + 1 ) ) ) elif ( i == j ): a[i,j] = float ( - i ) / np.sqrt ( float ( i * ( i + 1 ) ) ) return a def helmert_determinant ( n ): #*****************************************************************************80 # ## HELMERT_DETERMINANT computes the determinant of the HELMERT matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 11 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real DETERM, the determinant. # if ( ( n % 2 ) == 0 ): determ = - 1.0 else: determ = 1.0 return determ def helmert_determinant_test ( ): #*****************************************************************************80 # ## HELMERT_DETERMINANT_TEST tests HELMERT_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 11 February 2015 # # Author: # # John Burkardt # from helmert import helmert from r8mat_print import r8mat_print print '' print 'HELMERT_DETERMINANT_TEST' print ' HELMERT_DETERMINANT computes the HELMERT determinant.' m = 5 n = m a = helmert ( n ) r8mat_print ( m, n, a, ' HELMERT matrix:' ) value = helmert_determinant ( n ) print '' print ' Value = %g' % ( value ) print '' print 'HELMERT_DETERMINANT_TEST' print ' Normal end of execution.' return def helmert_inverse ( n ): #*****************************************************************************80 # ## HELMERT_INVERSE returns the inverse of the HELMERT matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the inverse matrix. # import numpy as np a = helmert ( n ) a = np.transpose ( a ) return a def helmert_test ( ): #*****************************************************************************80 # ## HELMERT_TEST tests HELMERT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 11 February 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'HELMERT_TEST' print ' HELMERT computes the HELMERT matrix.' m = 5 n = m a = helmert ( n ) r8mat_print ( m, n, a, ' HELMERT matrix:' ) print '' print 'HELMERT_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) helmert_test ( ) timestamp ( )