#! /usr/bin/env python # def hermite ( n ): #*****************************************************************************80 # ## HERMITE returns the HERMITE matrix. # # Example: # # N = 11 # # 1 . . . . . . . . . . # . 2 . . . . . . . . . # -2 . 4 . . . . . . . . # . -12 . 8 . . . . . . . # 12 . -48 . 16 . . . . . . # . 120 . -160 . 32 . . . . . # -120 . 720 . -480 . 64 . . . . # . -1680 . 3360 . -1344 . 128 . . . # 1680 . -13440 . 13440 . -3584 . 256 . . # . 30240 . -80640 . 48384 . -9216 . 512 . # -30240 . 302400 . -403200 . 161280 . -23040 . 1024 # # Properties: # # A is generally not symmetric: A' ~= A. # # A is lower triangular. # # det ( A ) = 2^((N*(N-1))/2) # # LAMBDA(I) = 2^(I-1). # # A is integral: int ( A ) = A. # # A is reducible. # # Successive diagonals are zero, positive, zero, negative. # # A is generally not normal: A' * A ~= A * A'. # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 12 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) a[0,0] = 1.0 if ( 1 < n ): a[1,1] = 2.0 for i in range ( 2, n ): for j in range ( 0, n ): if ( j == 0 ): a[i,j] = - 2.0 * ( i - 1 ) * a[i-2,j] else: a[i,j] = 2.0 * a[i-1,j-1] - 2.0 * ( i - 1 ) * a[i-2,j] return a def hermite_determinant ( n ): #*****************************************************************************80 # ## HERMITE_DETERMINANT computes the determinant of the HERMITE matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 12 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the determinant. # power = ( n * ( n - 1 ) ) // 2 value = 2 ** power return value def hermite_determinant_test ( ): #*****************************************************************************80 # ## HERMITE_DETERMINANT_TEST tests HERMITE_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 13 February 2015 # # Author: # # John Burkardt # from hermite import hermite from r8mat_print import r8mat_print print '' print 'HERMITE_DETERMINANT_TEST' print ' HERMITE_DETERMINANT computes the HERMITE determinant.' m = 5 n = m a = hermite ( m, n ) r8mat_print ( m, n, a, ' HERMITE matrix:' ) value = hermite_determinant ( n ) print ' Value = %g' % ( value ) print '' print 'HERMITE_DETERMINANT_TEST' print ' Normal end of execution.' return def hermite_inverse ( n ): #*****************************************************************************80 # ## HERMITE_INVERSE returns the inverse of the HERMITE matrix. # # Example: # # N = 11 # # 1 . . . . . . . . . . # . 1 . . . . . . . . . / 2 # 2 . 1 . . . . . . . . / 4 # . 6 . 1 . . . . . . . / 8 # 12 . 12 . 1 . . . . . . / 16 # . 60 . 20 . 1 . . . . . / 32 # 120 . 180 . 30 . 1 . . . . / 64 # . 840 . 420 . 42 . 1 . . . / 128 # 1680 . 3360 . 840 . 56 . 1 . . / 256 # . 15120 . 10080 . 1512 . 72 . 1 . / 512 # 30240 . 75600 . 25200 . 2520 . 90 . 1 / 1024 # # Properties: # # A is generally not symmetric: A' ~= A. # # A is nonnegative. # # A is lower triangular. # # det ( A ) = 1 / 2^((N*(N-1))/2) # # LAMBDA(I) = 1 / 2^(I-1) # # A is reducible. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) a[0,0] = 1.0 if ( 1 < n ): a[1,1] = 0.5 if ( 2 < n ): for i in range ( 2, n ): for j in range ( 0, n ): if ( j == 0 ): a[i,j] = ( float ( i - 1 ) * a[i-2,j] ) / 2.0 else: a[i,j] = ( float ( i - 1 ) * a[i-2,j] + a[i-1,j-1] ) / 2.0 return a def hermite_test ( ): #*****************************************************************************80 # ## HERMITE_TEST tests HERMITE. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 12 February 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'HERMITE_TEST' print ' HERMITE computes the HERMITE matrix.' m = 5 n = m a = hermite ( n ) r8mat_print ( m, n, a, ' HERMITE matrix:' ) print '' print 'HERMITE_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) hermite_test ( ) timestamp ( )