#! /usr/bin/env python # def herndon ( n ): #*****************************************************************************80 # ## HERNDON returns the HERNDON matrix. # # Formula: # # c = ( n * ( n + 1 ) * ( 2 * n - 5 ) ) / 6 # a(n,n) = - 1 / c # for i = 1 : n - 1 # a(i,n) = a(n,i) = i / c # a(i,i) = ( c - i*i ) / c # for j = 1, i - 1 # a(i,j) = a(j,i) = - i * j / c # end # end # # Example: # # N = 5 # # 0.96 -0.08 -0.12 -0.16 0.04 # -0.08 0.84 -0.24 -0.32 0.08 # -0.12 -0.24 0.64 -0.48 0.12 # -0.16 -0.32 -0.48 0.36 0.16 # 0.04 0.08 0.12 0.16 -0.04 # # Properties: # # A is symmetric: A' = A. # # Because A is symmetric, it is normal: A' * A = A * A'. # # The eigenvalues of A are: # # 1 (multiplicity N-2), # 6 / ( P * ( N + 1 ), # P / ( N * ( 5 - 2 * N ) ), # # where # # P = 3 + sqrt ( ( 4 * N - 3 ) * ( N - 1 ) * 3 / ( N + 1 ) ). # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 12 February 2015 # # Author: # # John Burkardt # # Reference: # # John Herndon, # Algorithm 52, A Set of Test Matrices, # Communications of the ACM, # April, 1961. # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) c = float ( n * ( n + 1 ) * ( 2 * n - 5 ) ) / 6.0 a[n-1,n-1] = - 1.0 / c for i in range ( 0, n - 1 ): a[i,n-1] = float ( i + 1 ) / c a[n-1,i] = float ( i + 1 ) / c a[i,i] = ( c - float ( ( i + 1 ) * ( i + 1 ) ) ) / c for j in range ( 0, i ): a[i,j] = - float ( ( i + 1 ) * ( j + 1 ) ) / c a[j,i] = - float ( ( i + 1 ) * ( j + 1 ) ) / c return a def herndon_determinant ( n ): #*****************************************************************************80 # ## HERNDON_DETERMINANT computes the determinant of the HERNDON matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 12 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the determinant. # value = 6.0 / float ( ( n + 1 ) * n * ( 5 - 2 * n ) ) return value def herndon_determinant_test ( ): #*****************************************************************************80 # ## HERNDON_DETERMINANT_TEST tests HERNDON_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 12 February 2015 # # Author: # # John Burkardt # from herndon import herndon from r8mat_print import r8mat_print print '' print 'HERNDON_DETERMINANT_TEST' print ' HERNDON_DETERMINANT computes the HERNDON determinant.' m = 5 n = m a = herndon ( n ) r8mat_print ( m, n, a, ' HERNDON matrix:' ) value = herndon_determinant ( n ) print '' print ' Value = %g' % ( value ) print '' print 'HERNDON_DETERMINANT_TEST' print ' Normal end of execution.' return def herndon_inverse ( n ): #*****************************************************************************80 # ## HERNDON_INVERSE returns the inverse of the Herndon matrix. # # Formula: # # if ( I == N ) # A(I,J) = J # else if ( J == N ) # A(I,J) = I # else if ( I == J ) # A(I,J) = 1 # else # A(I,J) = 0 # # Example: # # N = 5 # # 1 0 0 0 1 # 0 1 0 0 2 # 0 0 1 0 3 # 0 0 0 1 4 # 1 2 3 4 5 # # Properties: # # A is symmetric. # # A is border-banded. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 March 2015 # # Author: # # John Burkardt # # Reference: # # John Herndon, # Algorithm 52, A Set of Test Matrices, # Communications of the ACM, # April, 1961. # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n - 1 ): a[i,i] = 1.0 for i in range ( 0, n - 1 ): a[i,n-1] = float ( i + 1 ) for j in range ( 0, n - 1 ): a[n-1,j] = float ( j + 1 ) a[n-1,n-1] = float ( n ) return a def herndon_test ( ): #*****************************************************************************80 # ## HERNDON_TEST tests HERNDON. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 12 February 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'HERNDON_TEST' print ' HERNDON computes the HERNDON matrix.' m = 5 n = m a = herndon ( n ) r8mat_print ( m, n, a, ' HERNDON matrix:' ) print '' print 'HERNDON_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) herndon_test ( ) timestamp ( )