#! /usr/bin/env python # def identity ( m, n ): #*****************************************************************************80 # ## IDENTITY returns the IDENTITY matrix. # # Formula: # # if ( I = J ) # A(I,J) = 1 # else # A(I,J) = 0 # # Example: # # M = 4, N = 5 # # 1 0 0 0 0 # 0 1 0 0 0 # 0 0 1 0 0 # 0 0 0 1 0 # # Rectangular properties: # # A is integral: int ( A ) = A. # # A is a zero/one matrix. # # Square Properties: # # A is nonsingular. # # A is involutional: A * A = I. # # A is diagonal. # # Because A is diagonal, it has property A. # # A is symmetric: A' = A. # # A is a circulant matrix: each row is shifted once to get the next row. # # Because A is symmetric, it is normal. # # Because A is normal, it is diagonalizable. # # LAMBDA(1:N) = 1 # # The matrix of eigenvectors of A is A. # # det ( A ) = 1. # # A is unimodular. # # For any vector v, A*v = v. # # For any matrix B, A*B = B*A=B. # # A is persymmetric: A(I,J) = A(N+1-J,N+1-I). # # A is centrosymmetric: A(I,J) = A(N+1-I,N+1-J). # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer M, N, the number of rows and columns of # the matrix. # # Output, real A(M,N), the matrix. # import numpy as np a = np.zeros ( [ m, n ] ) for i in range ( 0, m ): for j in range ( 0, n ): if ( i == j ): a[i,j] = 1.0 return a def identity_condition ( n ): #*****************************************************************************80 # ## IDENTITY_CONDITION returns the L1 condition of the IDENTITY matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 10 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the L1 condition. # a_norm = 1; b_norm = 1; value = a_norm * b_norm; return value def identity_condition_test ( ): #*****************************************************************************80 # ## IDENTITY_CONDITION_TEST tests IDENTITY_CONDITION. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 10 February 2015 # # Author: # # John Burkardt # from identity import identity from r8mat_print import r8mat_print print '' print 'IDENTITY_CONDITION_TEST' print ' IDENTITY_CONDITION computes the condition of the IDENTITY matrix.' print '' m = 4 n = m a = identity ( m, n ) r8mat_print ( m, n, a, ' IDENTITY matrix:' ) value = identity_condition ( n ) print '' print ' Value = %g' % ( value ) print '' print 'IDENTITY_CONDITION_TEST' print ' Normal end of execution.' return def identity_determinant ( n ): #*****************************************************************************80 # ## IDENTITY_DETERMINANT returns the determinant of the IDENTITY matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the determinant. # value = 1.0 return value def identity_determinant_test ( ): #*****************************************************************************80 # ## IDENTITY_DETERMINANT_TEST tests IDENTITY_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 February 2015 # # Author: # # John Burkardt # from identity import identity from r8mat_print import r8mat_print print '' print 'IDENTITY_DETERMINANT_TEST' print ' IDENTITY_DETERMINANT computes the determinant of the IDENTITY matrix.' print '' m = 4 n = m a = identity ( m, n ) r8mat_print ( m, n, a, ' IDENTITY matrix:' ) value = identity_determinant ( n ) print '' print ' Value = %g' % ( value ) print '' print 'IDENTITY_DETERMINANT_TEST' print ' Normal end of execution.' return def identity_eigen_right ( n ): #*****************************************************************************80 # ## IDENTITY_EIGEN_RIGHT returns the right eigenvectors of the IDENTITY matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): a[i,i] = 1.0 return a def identity_eigenvalues ( n ): #*****************************************************************************80 # ## IDENTITY_EIGENVALUES returns the eigenvalues of the IDENTITY matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real LAM(N), the eigenvalues. # import numpy as np lam = np.ones ( n ) return lam def identity_inverse ( n ): #*****************************************************************************80 # ## IDENTITY_INVERSE returns the inverse of the IDENTITY matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( [ n, n ] ) for i in range ( 0, n ): for j in range ( 0, n ): if ( i == j ): a[i,j] = 1.0 return a def identity_test ( ): #*****************************************************************************80 # ## IDENTITY_TEST tests IDENTITY. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 February 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'IDENTITY_TEST' print ' IDENTITY computes the IDENTITY matrix.' m = 4 n = m a = identity ( m, n ) r8mat_print ( m, n, a, ' IDENTITY matrix:' ) print '' print 'IDENTITY_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) identity_test ( ) timestamp ( )