#! /usr/bin/env python # def ijfact1 ( n ): #*****************************************************************************80 # ## IJFACT1 returns the IJFACT1 matrix. # # Formula: # # A(I,J) = (I+J)! # # Example: # # N = 4 # # 2 6 24 120 # 6 24 120 720 # 24 120 720 5040 # 120 720 5040 40320 # # Properties: # # A is symmetric: A' = A. # # Because A is symmetric, it is normal. # # Because A is normal, it is diagonalizable. # # A is a Hankel matrix: constant along anti-diagonals. # # A is integral: int ( A ) = A. # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 February 2015 # # Author: # # John Burkardt # # Reference: # # MJC Gover, # The explicit inverse of factorial Hankel matrices, # Department of Mathematics, University of Bradford, 1993. # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real A(N,N), the matrix. # import numpy as np from r8_factorial import r8_factorial a = np.zeros ( [ n, n ] ) for i in range ( 0, n ): for j in range ( 0, n ): a[i,j] = r8_factorial ( i + j + 2 ) return a def ijfact1_determinant ( n ): #*****************************************************************************80 # ## IJFACT1_DETERMINANT computes the determinant of the IJFACT1 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the determinant. # from r8_factorial import r8_factorial value = 1.0 for i in range ( 1, n ): value = value * r8_factorial ( i + 1 ) * r8_factorial ( n - i ) value = value * r8_factorial ( n + 1 ) return value def ijfact1_determinant_test ( ): #*****************************************************************************80 # ## IJFACT1_DETERMINANT_TEST tests IJFACT1_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 February 2015 # # Author: # # John Burkardt # from ijfact1 import ijfact1 from r8mat_print import r8mat_print print '' print 'IJFACT1_DETERMINANT_TEST' print ' IJFACT1_DETERMINANT computes the IJFACT1 determinant.' m = 5 n = m a = ijfact1 ( n ) r8mat_print ( m, n, a, ' IJFACT1 matrix:' ) value = ijfact1_determinant ( n ) print ' Value = %g' % ( value ) print '' print 'IJFACT1_DETERMINANT_TEST' print ' Normal end of execution.' return def ijfact1_test ( ): #*****************************************************************************80 # ## IJFACT1_TEST tests IJFACT1. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 February 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'IJFACT1_TEST' print ' IJFACT1 computes the IJFACT1 matrix.' m = 5 n = m a = ijfact1 ( n ) r8mat_print ( m, n, a, ' IJFACT1 matrix:' ) print '' print 'IJFACT1_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) ijfact1_test ( ) timestamp ( )