#! /usr/bin/env python # def ijfact2 ( n ): #*****************************************************************************80 # ## IJFACT2 returns the IJFACT2 matrix. # # Formula: # # A(I,J) = 1 / ( (I+J)! ) # # Example: # # N = 4 # # 1/2 1/6 1/24 1/120 # 1/6 1/24 1/120 1/720 # 1/24 1/120 1/720 1/5040 # 1/120 1/720 1/5040 1/40320 # # Properties: # # A is symmetric: A' = A. # # Because A is symmetric, it is normal. # # Because A is normal, it is diagonalizable. # # A is a Hankel matrix: constant along anti-diagonals. # # A is integral: int ( A ) = A. # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 February 2015 # # Author: # # John Burkardt # # Reference: # # MJC Gover, # The explicit inverse of factorial Hankel matrices, # Department of Mathematics, University of Bradford, 1993. # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real A(N,N), the matrix. # import numpy as np from r8_factorial import r8_factorial a = np.zeros ( [ n, n ] ) for i in range ( 0, n ): for j in range ( 0, n ): a[i,j] = 1.0 / r8_factorial ( i + j + 2 ) return a def ijfact2_determinant ( n ): #*****************************************************************************80 # ## IJFACT2_DETERMINANT computes the determinant of the IJFACT2 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the determinant. # from r8_factorial import r8_factorial value = 1.0 for i in range ( 0, n ): value = value * r8_factorial ( i ) / r8_factorial ( n + 1 + i ) test = ( n * ( n - 1 ) ) // 2 if ( test % 2 != 0 ): value = - value return value def ijfact2_determinant_test ( ): #*****************************************************************************80 # ## IJFACT2_DETERMINANT_TEST tests IJFACT2_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 February 2015 # # Author: # # John Burkardt # from ijfact2 import ijfact2 from r8mat_print import r8mat_print print '' print 'IJFACT2_DETERMINANT_TEST' print ' IJFACT2_DETERMINANT computes the IJFACT2 determinant.' m = 5 n = m a = ijfact2 ( n ) r8mat_print ( m, n, a, ' IJFACT2 matrix:' ) value = ijfact2_determinant ( n ) print ' Value = %g' % ( value ) print '' print 'IJFACT2_DETERMINANT_TEST' print ' Normal end of execution.' return def ijfact2_test ( ): #*****************************************************************************80 # ## IJFACT2_TEST tests IJFACT2. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 February 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'IJFACT2_TEST' print ' IJFACT2 computes the IJFACT2 matrix.' m = 5 n = m a = ijfact2 ( n ) r8mat_print ( m, n, a, ' IJFACT2 matrix:' ) print '' print 'IJFACT2_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) ijfact2_test ( ) timestamp ( )