#! /usr/bin/env python # def ill3 ( ): #*****************************************************************************80 # ## ILL3 returns the ILL3 matrix. # # Discussion: # # This is an ill conditioned 3 by 3 matrix. # # Formula: # # -149 -50 -154 # 537 180 546 # -27 -9 -25 # # Properties: # # A is integral, therefore det ( A ) is integral, and # det ( A ) * inverse ( A ) is integral. # # The eigenvalues are ( 1, 2, 3 ). # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 January 2015 # # Author: # # John Burkardt # # Reference: # # Joan Westlake, # A Handbook of Numerical Matrix Inversion and Solution of # Linear Equations, # John Wiley, 1968, # ISBN13: 978-0471936756, # LC: QA263.W47. # # Parameters: # # Output, real A(3,3), the matrix. # import numpy as np a = np.array ( [ [ -149.0, -50.0, -154.0 ], \ [ 537.0, 180.0, 546.0 ], \ [ -27.0, -9.0, -25.0 ] ] ) return a def ill3_condition ( ): #*****************************************************************************80 # ## ILL3_CONDITION returns the L1 condition of the ILL3 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 January 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real VALUE, the L1 condition number. # value = 725 * 299 return value def ill3_condition_test ( ): #*****************************************************************************80 # ## ILL3_CONDITION_TEST tests ILL3_CONDITION. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 January 2015 # # Author: # # John Burkardt # from ill3 import ill3 from r8mat_print import r8mat_print print '' print 'ILL3_CONDITION_TEST' print ' ILL3_CONDITION computes the condition of the ILL3 matrix.' print '' m = 3 n = m a = ill3 ( ) r8mat_print ( m, n, a, ' ILL3 matrix:' ) value = ill3_condition ( ) print '' print ' Value = %g' % ( value ) print '' print 'ILL3_CONDITION_TEST' print ' Normal end of execution.' return def ill3_determinant ( ): #*****************************************************************************80 # ## ILL3_DETERMINANT returns the determinant of the ILL3 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 January 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real VALUE, the determinant number. # value = 6.0 return value def ill3_determinant_test ( ): #*****************************************************************************80 # ## ILL3_DETERMINANT_TEST tests ILL3_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 26 January 2015 # # Author: # # John Burkardt # from ill3 import ill3 from r8mat_print import r8mat_print print '' print 'ILL3_DETERMINANT_TEST' print ' ILL3_DETERMINANT computes the determinant of the ILL3 matrix.' print '' m = 3 n = m a = ill3 ( ) r8mat_print ( m, n, a, ' ILL3 matrix:' ) value = ill3_determinant ( ) print '' print ' Value = %g' % ( value ) print '' print 'ILL3_DETERMINANT_TEST' print ' Normal end of execution.' return def ill3_eigen_right ( ): #*****************************************************************************80 # ## ILL3_EIGEN_RIGHT returns the right eigenvectors of the ILL3 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 March 2015 # # Author: # # John Burkardt # # Reference: # # Joan Westlake, # A Handbook of Numerical Matrix Inversion and Solution of # Linear Equations, # John Wiley, 1968, # ISBN13: 978-0471936756, # LC: QA263.W47. # # Parameters: # # Output, real A(3,3), the right eigenvector matrix. # import numpy as np # # Note that the matrix entries are listed by row. # a = np.array ( [ \ [ -0.139139989879567, \ -0.404061017818396, \ 0.316227766017190 ], \ [ 0.973979929161820, \ 0.909137290098421, \ -0.948683298050396 ], \ [ -0.178894272703878, \ 0.101015254452291, \ -0.000000000000407 ] ] ) return a def ill3_eigenvalues ( ): #*****************************************************************************80 # ## ILL3_EIGENVALUES returns the eigenvalues of the ILL3 matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 March 2015 # # Author: # # John Burkardt # # Reference: # # Joan Westlake, # A Handbook of Numerical Matrix Inversion and Solution of # Linear Equations, # John Wiley, 1968, # ISBN13: 978-0471936756, # LC: QA263.W47. # # Parameters: # # Output, real LAMBDA(3), the eigenvalues. # import numpy as np lam = np.array ( [ 3.0, 2.0, 1.0 ] ) return lam def ill3_inverse ( ): #*****************************************************************************80 # ## ILL3_INVERSE returns the inverse of the ILL3 matrix. # # Formula: # # 69 68/3 70 # -439/2 -433/6 -224 # 9/2 3/2 5 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 March 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real A(3,3), the matrix. # import numpy as np # # Note that the matrix entries are listed by row. # a = np.array ( [ \ [ 69.0, 68.0 / 3.0, 70.0 ], \ [ -439.0 / 2.0, -433.0 / 6.0, -224.0 ], \ [ 4.5, 1.5, 5.0 ] ] ) return a def ill3_test ( ): #*****************************************************************************80 # ## ILL3_TEST tests ILL3. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 18 January 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'ILL3_TEST' print ' ILL3 computes the ILL3 matrix.' m = 3 n = m a = ill3 ( ) r8mat_print ( m, n, a, ' ILL3 matrix:' ) print '' print 'ILL3_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) ill3_test ( ) timestamp ( )