#! /usr/bin/env python # def integration ( alpha, n ): #*****************************************************************************80 # ## INTEGRATION returns the INTEGRATION matrix. # # Formula: # # if ( I = J ) # A(I,J) = 1 # else if ( J = I + 1 ) # A(I,J) = ALPHA / I # else # A(I,J) = 0 # # Example: # # ALPHA = 2, N = 5 # # 1 2 0 0 0 # 0 1 2/2 0 0 # 0 0 1 2/3 0 # 0 0 0 1 2/4 # 0 0 0 0 1 # # Properties: # # A is generally not symmetric: A' /= A. # # A is unit upper triangular. # # A is bidiagonal. # # Because A is bidiagonal, it has property A (bipartite). # # A is nonsingular. # # det ( A ) = 1. # # A is unimodular. # # LAMBDA(1:N) = 1. # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real ALPHA, the scalar which defines the first # superdiagonal of the matrix. # # Input, integer N, the number of rows and columns of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for j in range ( 0, n ): for i in range ( 0, n ): if ( j == i ): a[i,j] = 1.0 elif ( j == i + 1 ): a[i,j] = alpha / float ( i + 1 ) return a def integration_determinant ( alpha, n ): #*****************************************************************************80 # ## INTEGRATION_DETERMINANT returns the determinant of the INTEGRATION matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real ALPHA, the scalar defining A. # A common value is -1. # # Input, integer N, the order of the matrix. N must be even. # # Output, real VALUE, the determinant. # value = 1.0 return value def integration_determinant_test ( ): #*****************************************************************************80 # ## INTEGRATION_DETERMINANT_TEST tests INTEGRATION_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 February 2015 # # Author: # # John Burkardt # from integration import integration from r8mat_print import r8mat_print from r8_uniform_ab import r8_uniform_ab print '' print 'INTEGRATION_DETERMINANT_TEST' print ' INTEGRATION_DETERMINANT computes the determinant of the INTEGRATION matrix.' print '' m = 4 n = m r8_lo = -5.0 r8_hi = +5.0 seed = 123456789 alpha, seed = r8_uniform_ab ( r8_lo, r8_hi, seed ) a = integration ( alpha, n ) r8mat_print ( m, n, a, ' INTEGRATION matrix:' ) value = integration_determinant ( alpha, n ) print '' print ' Value = %g' % ( value ) print '' print 'INTEGRATION_DETERMINANT_TEST' print ' Normal end of execution.' return def integration_inverse ( alpha, n ): #*****************************************************************************80 # ## INTEGRATION_INVERSE returns the inverse of the INTEGRATION matrix. # # Formula: # # if ( I = J ) # A(I,J) = 1 # else if ( I < J ) # A(I,J) = (-ALPHA)^(J-I) / (I*...*J-1) # else # A(I,J) = 0 # # Example: # # ALPHA = 2, N = 5 # # 1 -2 2 -4/3 2/3 # 0 1 -1 2/3 -1/3 # 0 0 1 -2/3 1/3 # 0 0 0 1 -1/2 # 0 0 0 0 1 # # Properties: # # A is generally not symmetric: A' /= A. # # A is unit upper triangular. # # A is nonsingular. # # det ( A ) = 1. # # A is unimodular. # # LAMBDA(1:N) = 1. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real ALPHA, the scalar which defines the first # superdiagonal of the matrix. # # Input, integer N, the number of rows and columns of A. # # Output, real A(N,N), the matrix. # import numpy as np from r8_rise import r8_rise a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): if ( j == i ): a[i,j] = 1.0 elif ( i < j ): a[i,j] = ( - alpha ) ** ( j - i ) / r8_rise ( i + 1, j - i ) return a def integration_test ( ): #*****************************************************************************80 # ## INTEGRATION_TEST tests INTEGRATION. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 February 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print from r8_uniform_ab import r8_uniform_ab print '' print 'INTEGRATION_TEST' print ' INTEGRATION computes the INTEGRATION matrix.' m = 6 n = m r8_lo = -5.0 r8_hi = +5.0 seed = 123456789 alpha, seed = r8_uniform_ab ( r8_lo, r8_hi, seed ) a = integration ( alpha, n ) r8mat_print ( m, n, a, ' INTEGRATION matrix:' ) print '' print 'INTEGRATION_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) integration_test ( ) timestamp ( )