#! /usr/bin/env python # def invol ( n ): #*****************************************************************************80 # ## INVOL returns the INVOL matrix. # # Formula: # # A(I,J) = 1 / ( I + J - 1 ) # # Set D = -N # # Multiply column 1 of A by D. # # For I = 1 to N-1 # D = -(N+I)*(N-I)*D/(I*I) # Multiply row I + 1 by D. # End # # Example: # # N = 5 # # -5 0.5 0.33 0.25 0.2 # -300 40.0 30.00 24.00 20.0 # 1050 -157.5 -126.00 -105.00 -90.0 # -1400 224.0 186.66 160.00 140.0 # 630 -105.0 -90.00 -78.75 -70.0 # # Properties: # # A is generally not symmetric: A' /= A. # # A is involutional: A * A = I. # # det ( A ) = +1 or -1. # # A is unimodular. # # The matrices: # B = 1/2 ( I - A ) # and # C = 1/2 ( I + A ) # are idempotent, that is, B * B = B, and C * C = C. # # A is ill-conditioned. # # A is a diagonally scaled version of the Hilbert matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 February 2015 # # Author: # # John Burkardt # # Reference: # # Alston Householder, John Carpenter, # The singular values of involutory and of idempotent matrices, # Numerische Mathematik, # Volume 5, 1963, pages 234-237. # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, n ): a[i,j] = 1.0 / float ( i + j + 1 ) for i in range ( 0, n ): a[i,0] = - n * a[i,0] d = - float ( n ) for i in range ( 1, n ): d = - float ( n + i ) * float ( n - i ) * d / float ( i * i ) for j in range ( 0, n ): a[i,j] = d * a[i,j] return a def invol_determinant ( n ): #*****************************************************************************80 # ## INVOL_DETERMINANT computes the determinant of the INVOL matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real DETERM, the determinant. # if ( ( n % 4 ) == 0 or ( n % 4 ) == 3): value = 1.0 else: value = - 1.0 return value def invol_determinant_test ( ): #*****************************************************************************80 # ## INVOL_DETERMINANT_TEST tests INVOL_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 February 2015 # # Author: # # John Burkardt # from invol import invol from r8mat_print import r8mat_print print '' print 'INVOL_DETERMINANT_TEST' print ' INVOL_DETERMINANT computes the INVOL determinant.' m = 5 n = m a = invol ( n ) r8mat_print ( m, n, a, ' INVOL matrix:' ) value = invol_determinant ( n ) print '' print ' Value = %g' % ( value ) print '' print 'INVOL_DETERMINANT_TEST' print ' Normal end of execution.' return def invol_inverse ( n ): #*****************************************************************************80 # ## INVOL_INVERSE returns the inverse of the INVOL matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # a = invol ( n ) return a def invol_test ( ): #*****************************************************************************80 # ## INVOL_TEST tests INVOL. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 February 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'INVOL_TEST' print ' INVOL computes the INVOL matrix.' m = 5 n = m a = invol ( n ) r8mat_print ( m, n, a, ' INVOL matrix:' ) print '' print 'INVOL_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) invol_test ( ) timestamp ( )