#! /usr/bin/env python # def jacobi ( m, n ): #*****************************************************************************80 # ## JACOBI returns the JACOBI matrix. # # Formula: # # if ( J = I - 1 ) # A(I,J) = 0.5 * sqrt ( ( 4 * J^2 ) / ( 4 * J^2 - 1 ) ) # else if ( J = I + 1 ) # A(I,J) = 0.5 * sqrt ( ( 4 * (J-1)^2 ) / ( 4 * (J-1)^2 - 1 ) ) # else # A(I,J) = 0 # # Example: # # M = 4, N = 4 # # 0 0.577350269 0 0 # 0.577350269 0 0.516397779 0 # 0 0.516397779 0 0.507092553 # 0 0 0.507092553 0 # # Properties: # # A is symmetric: A' = A. # # Because A is symmetric, it is normal. # # Because A is normal, it is diagonalizable. # # A has a zero diagonal. # # The eigenvalues of A are the zeros of the Legendre polynomial # of degree N. They lie symmetrically in [-1,1], and are also # the nodes of Gauss-Legendre quadrature. For the case of N = 4, # these eigenvalues are # # [ -0.861136312, -0.339981044, +0.339981044, +0.861136312 ]. # # It follows that A is singular when N is odd. # # The J-th Gauss-Legendre weight is twice the square of the first # component of the J-th eigenvector of A. For the case of N = 4, # the eigenvector matrix is: # # -0.417046 -0.571028 -0.571028 0.417046 # 0.622037 0.336258 -0.336258 0.622038 # -0.571028 0.417046 0.417046 0.571028 # 0.336258 -0.622037 0.622038 0.336258 # # and the corresponding weights are # # [ 0.347854845, 0.652145155, 0.652145155, 0.347854845 ] # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 February 2015 # # Author: # # John Burkardt # # Reference: # # Lloyd Trefethen, David Bau, # Numerical Linear Algebra, # SIAM, 1997, pages 287-292. # # Parameters: # # Input, integer M, N, the number of rows and columns of A. # # Output, real A(M,N), the matrix. # import numpy as np a = np.zeros ( ( m, n ) ) for i in range ( 0, m ): for j in range ( 0, n ): if ( j == i - 1 ): a[i,j] = 0.5 * np.sqrt ( float ( 4 * ( j + 1 ) ** 2 ) \ / float ( 4 * ( j + 1 ) ** 2 - 1 ) ) elif ( j == i + 1 ): a[i,j] = 0.5 * np.sqrt ( float ( 4 * j ** 2 ) \ / float ( 4 * j ** 2 - 1 ) ) return a def jacobi_determinant ( n ): #*****************************************************************************80 # ## JACOBI_DETERMINANT returns the determinant of the JACOBI matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the determinant. # import numpy as np from legendre_zeros import legendre_zeros if ( ( n % 2 ) == 1 ): value = 0.0; else: lam = legendre_zeros ( n ) value = np.prod ( lam ) return value def jacobi_determinant_test ( ): #*****************************************************************************80 # ## JACOBI_DETERMINANT_TEST tests JACOBI_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 February 2015 # # Author: # # John Burkardt # from jacobi import jacobi from r8mat_print import r8mat_print print '' print 'JACOBI_DETERMINANT_TEST' print ' JACOBI_DETERMINANT computes the determinant of the JACOBI matrix.' print '' m = 4 n = m a = jacobi ( m, n ) r8mat_print ( m, n, a, ' JACOBI matrix:' ) value = jacobi_determinant ( n ) print '' print ' Value = %g' % ( value ) print '' print 'JACOBI_DETERMINANT_TEST' print ' Normal end of execution.' return def jacobi_inverse ( n ): #*****************************************************************************80 # ## JACOBI_INVERSE returns the inverse of the JACOBI matrix. # # Discussion: # # This inverse is related to that of the CLEMENT2 matrix. # # Example: # # N = 6 # # 0 1.7321 0 -1.7638 0 1.7689 # 1.7321 0 0 0 0 0 # 0 0 0 1.9720 0 -1.9777 # -1.7638 0 1.9720 0 0 0 # 0 0 0 0 0 1.9900 # 1.7689 0 -1.9777 0 1.9900 0 # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 12 April 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # N must be even. # # Output, real A(N,N), the matrix. # import numpy as np from sys import exit if ( ( n % 2 ) == 1 ): print '' print 'JACOBI_INVERSE - Fatal error!' print ' The Jacobi matrix is singular for odd N.' exit ( 'JACOBI_INVERSE - Fatal error!' ) a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): if ( ( i % 2 ) == 0 ): p = 1.0 for j in range ( i, n - 1, 2 ): a1 = 0.5 * np.sqrt ( float ( 4 * ( j + 1 ) * ( j + 1 ) ) \ / float ( 4 * ( j + 1 ) * ( j + 1 ) - 1 ) ) a2 = 0.5 * np.sqrt ( float ( 4 * j * j ) \ / float ( 4 * j * j - 1 ) ) if ( j == i ): p = p / a1 else: p = - p * a2 / a1 a[i,j+1] = p a[j+1,i] = p return a def jacobi_test ( ): #*****************************************************************************80 # ## JACOBI_TEST tests JACOBI. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 February 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'JACOBI_TEST' print ' JACOBI computes the JACOBI matrix.' m = 4 n = m a = jacobi ( m, n ) r8mat_print ( m, n, a, ' JACOBI matrix:' ) print '' print 'JACOBI_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) jacobi_test ( ) timestamp ( )