#! /usr/bin/env python # def jordan ( m, n, alpha ): #*****************************************************************************80 # ## JORDAN returns the JORDAN matrix. # # Formula: # # if ( I = J ) # A(I,J) = ALPHA # else if ( I = J-1 ) # A(I,J) = 1 # else # A(I,J) = 0 # # Example: # # ALPHA = 2, M = 5, N = 5 # # 2 1 0 0 0 # 0 2 1 0 0 # 0 0 2 1 0 # 0 0 0 2 1 # 0 0 0 0 2 # # Properties: # # A is upper triangular. # # A is lower Hessenberg. # # A is bidiagonal. # # Because A is bidiagonal, it has property A (bipartite). # # A is banded, with bandwidth 2. # # A is generally not symmetric: A' /= A. # # A is persymmetric: A(I,J) = A(N+1-J,N+1-I). # # A is nonsingular if and only if ALPHA is nonzero. # # det ( A ) = ALPHA^N. # # LAMBDA(I) = ALPHA. # # A is defective, having only one eigenvector, namely (1,0,0,...,0). # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer M, N, the number of rows and columns of A. # # Input, real ALPHA, the eigenvalue of the Jordan matrix. # # Output, real A(M,N), the matrix. # import numpy as np a = np.zeros ( ( m, n ) ) for i in range ( 0, m ): for j in range ( 0, n ): if ( i == j ): a[i,j] = alpha elif ( j == i + 1 ): a[i,j] = 1.0 return a def jordan_condition ( n, alpha ): #*****************************************************************************80 # ## JORDAN_CONDITION returns the L1 condition of the JORDAN matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Input, real ALPHA, the eigenvalue of the Jordan matrix. # # Output, real VALUE, the L1 condition number. # a2 = abs ( alpha ) if ( n == 1 ): a_norm = a2 else: a_norm = a2 + 1.0 if ( a2 == 1.0 ): b_norm = float ( n ) * a2 else: b_norm = ( a2 ** n - 1.0 ) / ( a2 - 1.0 ) / a2 ** n value = a_norm * b_norm return value def jordan_condition_test ( ): #*****************************************************************************80 # ## JORDAN_CONDITION_TEST tests JORDAN_CONDITION. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 February 2015 # # Author: # # John Burkardt # from jordan import jordan from r8_uniform_01 import r8_uniform_01 from r8mat_print import r8mat_print print '' print 'JORDAN_CONDITION_TEST' print ' JORDAN_CONDITION computes the condition of the JORDAN matrix.' print '' seed = 123456789 m = 5 n = m alpha, seed = r8_uniform_01 ( seed ) a = jordan ( m, n, alpha ) r8mat_print ( n, n, a, ' JORDAN matrix:' ) value = jordan_condition ( n, alpha ) print '' print ' Value = %g' % ( value ) print '' print 'JORDAN_CONDITION_TEST' print ' Normal end of execution.' return def jordan_determinant ( n, alpha ): #*****************************************************************************80 # ## JORDAN_DETERMINANT returns the determinant of the JORDAN matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Input, real ALPHA, the eigenvalue of the Jordan matrix. # # Output, real VALUE, the determinant. # value = alpha ** n return value def jordan_determinant_test ( ): #*****************************************************************************80 # ## JORDAN_DETERMINANT_TEST tests JORDAN_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 February 2015 # # Author: # # John Burkardt # from jordan import jordan from r8mat_print import r8mat_print from r8_uniform_ab import r8_uniform_ab print '' print 'JORDAN_DETERMINANT_TEST' print ' JORDAN_DETERMINANT computes the determinant of the JORDAN matrix.' print '' m = 4 n = m r8_lo = -5.0 r8_hi = +5.0 seed = 123456789 alpha, seed = r8_uniform_ab ( r8_lo, r8_hi, seed ) a = jordan ( m, n, alpha ) r8mat_print ( m, n, a, ' JORDAN matrix:' ) value = jordan_determinant ( n, alpha ) print '' print ' Value = %g' % ( value ) print '' print 'JORDAN_DETERMINANT_TEST' print ' Normal end of execution.' return def jordan_eigenvalues ( n, alpha ): #*****************************************************************************80 # ## JORDAN_EIGENVALUES returns the eigenvalues of the JORDAN matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 12 April 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Input, real ALPHA, the eigenvalue of the Jordan matrix. # # Output, real LAM[N], the eigenvalues. # import numpy as np lam = np.zeros ( n ) for i in range ( 0, n ): lam[i] = alpha return value def jordan_inverse ( n, alpha ): #*****************************************************************************80 # ## JORDAN_INVERSE returns the inverse of the Jordan block matrix. # # Formula: # # if ( I <= J ) # A(I,J) = -1 * (-1/ALPHA)^(J+1-I) # else # A(I,J) = 0 # # Example: # # ALPHA = 2, N = 4 # # 1/2 -1/4 1/8 -1/16 # 0 1/2 -1/4 1/8 # 0 0 1/2 -1/4 # 0 0 0 1/2 # # Properties: # # A is upper triangular. # # A is Toeplitz: constant along diagonals. # # A is generally not symmetric: A' /= A. # # A is persymmetric: A(I,J) = A(N+1-J,N+1-I). # # The inverse of A is the Jordan block matrix, whose diagonal # entries are ALPHA, whose first superdiagonal entries are 1, # with all other entries zero. # # det ( A ) = (1/ALPHA)^N. # # LAMBDA(1:N) = 1 / ALPHA. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Input, real ALPHA, the eigenvalue of the Jordan matrix. # # Output, real A(N,N), the matrix. # import numpy as np from sys import exit a = np.zeros ( ( n, n ) ) if ( alpha == 0.0 ): print '' print 'JORDAN_INVERSE - Fatal error!' print ' The input parameter ALPHA was 0.' exit ( 'JORDAN_INVERSE - Fatal error!' ) for i in range ( 0, n ): for j in range ( 0, n ): if ( i <= j ): a[i,j] = - ( - 1.0 / alpha ) ** ( j + 1 - i ) return a def jordan_test ( ): #*****************************************************************************80 # ## JORDAN_TEST tests JORDAN. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 10 February 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print from r8_uniform_ab import r8_uniform_ab print '' print 'JORDAN_TEST' print ' JORDAN computes the JORDAN matrix.' m = 6 n = m r8_lo = -5.0 r8_hi = +5.0 seed = 123456789 alpha, seed = r8_uniform_ab ( r8_lo, r8_hi, seed ) a = jordan ( m, n, alpha ) r8mat_print ( m, n, a, ' JORDAN matrix:' ) print '' print 'JORDAN_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) jordan_test ( ) timestamp ( )