#! /usr/bin/env python # def kahan ( alpha, m, n ): #*****************************************************************************80 # ## KAHAN returns the KAHAN matrix. # # Formula: # # if ( I = J ) # A(I,I) = sin(ALPHA)^(I) # elseif ( I < J ) # A(I,J) = - sin(ALPHA)^(I) * cos(ALPHA) # else # A(I,J) = 0 # # Example: # # ALPHA = 0.25, N = 4 # # S -C*S -C*S -C*S # 0 S^2 -C*S^2 -C*S^2 # 0 0 S^3 -C*S^3 # 0 0 0 S^4 # # where # # S = sin(ALPHA), C=COS(ALPHA) # # Properties: # # A is upper triangular. # # A = B * C, where B is a diagonal matrix and C is unit upper triangular. # For instance, for the case M = 3, N = 4: # # A = | S 0 0 | * | 1 -C -C -C | # | 0 S^2 0 | | 0 1 -C -C | # | 0 0 S^3 | | 0 0 1 -C | # # A is generally not symmetric: A' /= A. # # A has some interesting properties regarding estimation of # condition and rank. # # det ( A ) = sin(ALPHA)^(N*(N+1)/2). # # LAMBDA(I) = sin ( ALPHA )^I # # A is nonsingular if and only if sin ( ALPHA ) =/= 0. # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 February 2015 # # Author: # # John Burkardt # # Reference: # # Nicholas Higham, # A survey of condition number estimation for triangular matrices, # SIAM Review, # Volume 9, 1987, pages 575-596. # # W Kahan, # Numerical Linear Algebra, # Canadian Mathematical Bulletin, # Volume 9, 1966, pages 757-801. # # Parameters: # # Input, real ALPHA, the scalar that defines A. A typical # value is 1.2. The "interesting" range of ALPHA is 0 < ALPHA < PI. # # Input, integer M, N, the number of rows and columns of A. # # Output, real A(M,N), the matrix. # import numpy as np a = np.zeros ( ( m, n ) ) for i in range ( 0, m ): si = np.sin ( alpha ) ** ( i + 1 ) csi = - np.cos ( alpha ) * si for j in range ( 0, n ): if ( j == i ): a[i,j] = si elif ( i < j ): a[i,j] = csi return a def kahan_determinant ( alpha, n ): #*****************************************************************************80 # ## KAHAN_DETERMINANT computes the determinant of the KAHAN matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real ALPHA, the parameter. # # Input, integer N, the order of the matrix. # # Output, real VALUE, the determinant. # import numpy as np power = ( n * ( n + 1 ) ) // 2 value = ( np.sin ( alpha ) ) ** power return value def kahan_determinant_test ( ): #*****************************************************************************80 # ## KAHAN_DETERMINANT_TEST tests KAHAN_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 December 2015 # # Author: # # John Burkardt # from kahan import kahan from r8_uniform_01 import r8_uniform_01 from r8mat_print import r8mat_print print '' print 'KAHAN_DETERMINANT_TEST' print ' KAHAN_DETERMINANT computes the KAHAN determinant.' seed = 123456789 m = 5 n = m alpha, seed = r8_uniform_01 ( seed ) a = kahan ( alpha, m, n ) r8mat_print ( m, n, a, ' KAHAN matrix:' ) value = kahan_determinant ( alpha, n ) print '' print ' Value = %g' % ( value ) print '' print 'KAHAN_DETERMINANT_TEST' print ' Normal end of execution.' return def kahan_inverse ( alpha, n ): #*****************************************************************************80 # ## KAHAN_INVERSE returns the inverse of the KAHAN matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real ALPHA, the scalar that defines A. A typical # value is 1.2. The "interesting" range of ALPHA is 0 < ALPHA < PI. # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) ci = np.cos ( alpha ); for i in range ( 0, n ): for j in range ( 0, n ): if ( i == j ): a[i,j] = 1.0; elif ( i == j - 1 ): a[i,j] = ci; elif ( i < j ): a[i,j] = ci * ( 1.0 + ci ) ** ( j - i - 1 ) # # Scale the columns. # for j in range ( 0, n): si = np.sin ( alpha ) ** ( j + 1 ) for i in range ( 0, n ): a[i,j] = a[i,j] / si return a def kahan_test ( ): #*****************************************************************************80 # ## KAHAN_TEST tests KAHAN. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 February 2015 # # Author: # # John Burkardt # from r8_uniform_01 import r8_uniform_01 from r8mat_print import r8mat_print print '' print 'KAHAN_TEST' print ' KAHAN computes the KAHAN matrix.' seed = 123456789 m = 5 n = 5 alpha, seed = r8_uniform_01 ( seed ) a = kahan ( alpha, m, n ) r8mat_print ( m, n, a, ' KAHAN matrix:' ) print '' print 'KAHAN_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) kahan_test ( ) timestamp ( )