#! /usr/bin/env python # def kershaw ( ): #*****************************************************************************80 # ## KERSHAW returns the KERSHAW matrix. # # Discussion: # # The Kershaw matrix is a simple example of a symmetric # positive definite matrix for which the incomplete Cholesky # factorization fails, because of a negative pivot. # # Example: # # 3 -2 0 2 # -2 3 -2 0 # 0 -2 3 -2 # 2 0 -2 3 # # Properties: # # A is symmetric. # # A is positive definite. # # det ( A ) = 1. # # LAMBDA(A) = [ # 5.828427124746192 # 5.828427124746188 # 0.171572875253810 # 0.171572875253810 ]. # # A does not have an incompete Cholesky factorization. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 February 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real A(4,4), the matrix. # import numpy as np a = np.array ( [ \ [ 3.0, -2.0, 0.0, 2.0 ], \ [ -2.0, 3.0, -2.0, 0.0 ], \ [ 0.0, -2.0, 3.0, -2.0 ], \ [ 2.0, 0.0, -2.0, 3.0 ] ] ) return a def kershaw_condition ( ): #*****************************************************************************80 # ## KERSHAW_CONDITION returns the L1 condition of the KERSHAW matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 February 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real VALUE, the condition. # a_norm = 7.0 b_norm = 7.0 value = a_norm * b_norm return value def kershaw_condition_test ( ): #*****************************************************************************80 # ## KERSHAW_CONDITION_TEST tests KERSHAW_CONDITION. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 February 2015 # # Author: # # John Burkardt # from kershaw import kershaw from r8mat_print import r8mat_print print '' print 'KERSHAW_CONDITION_TEST' print ' KERSHAW_CONDITION computes the condition of the KERSHAW matrix.' print '' n = 4 a = kershaw ( ) r8mat_print ( n, n, a, ' KERSHAW matrix:' ) value = kershaw_condition ( ) print '' print ' Value = %g' % ( value ) print '' print 'KERSHAW_CONDITION_TEST' print ' Normal end of execution.' return def kershaw_determinant ( ): #*****************************************************************************80 # ## KERSHAW_DETERMINANT returns the determinant of the KERSHAW matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 February 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real VALUE, the determinant. # value = 1.0 return value def kershaw_determinant_test ( ): #*****************************************************************************80 # ## KERSHAW_DETERMINANT_TEST tests KERSHAW_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 February 2015 # # Author: # # John Burkardt # from kershaw import kershaw from r8mat_print import r8mat_print print '' print 'KERSHAW_DETERMINANT_TEST' print ' KERSHAW_DETERMINANT computes the determinant of the KERSHAW matrix.' print '' n = 4 a = kershaw ( ) r8mat_print ( n, n, a, ' KERSHAW matrix:' ) value = kershaw_determinant ( ) print '' print ' Value = %g' % ( value ) print '' print 'KERSHAW_DETERMINANT_TEST' print ' Normal end of execution.' return def kershaw_eigen_right ( ): #*****************************************************************************80 # ## KERSHAW_EIGEN_RIGHT returns the right eigenvectors of the KERSHAW matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 March 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real X(4,4), the eigenvectors. # import numpy as np x = np.array ( [ \ [ 0.500000000000000, 0.500000000000000, \ -0.548490135760211, 0.446271857698584 ], \ [ -0.707106781186548, -0.000000000000000, \ -0.703402951241362, -0.072279237578588 ], \ [ 0.500000000000000, -0.500000000000000, \ -0.446271857698584, -0.548490135760211 ], \ [ -0.000000000000000, 0.707106781186548, \ 0.072279237578588, -0.703402951241362 ] ] ) return x def kershaw_eigenvalues ( ): #*****************************************************************************80 # ## KERSHAW_EIGENVALUES returns the eigenvalues of the KERSHAW matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 March 2015 # # Author: # # John Burkardt # # Reference: # # David Kershaw, # The Incomplete Cholesky-Conjugate Gradient Method for the Iterative # Solution of Systems of Linear Equations, # Journal of Computational Physics, # Volume 26, Number 1, January 1978, pages 43-65. # # Parameters: # # Output, real LAM(4), the eigenvalues of the matrix. # import numpy as np lam = np.array ( [ \ [ 5.828427124746192 ], \ [ 5.828427124746188 ], \ [ 0.171572875253810 ], \ [ 0.171572875253810 ] ] ) return lam def kershaw_inverse ( ): #*****************************************************************************80 # ## KERSHAW_INVERSE returns the inverse of the KERSHAW matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 16 March 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real A(4,4), the matrix. # import numpy as np # # Note that the matrix entries are listed by row. # a = np.array ( [ \ [ 3.0, 2.0, 0.0, -2.0 ], \ [ 2.0, 3.0, 2.0, 0.0 ], \ [ 0.0, 2.0, 3.0, 2.0 ], \ [ -2.0, 0.0, 2.0, 3.0 ] ] ) return a def kershaw_llt ( ): #*****************************************************************************80 # ## KERSHAW_LLT returns the Cholesky factor of the KERSHAW matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 15 March 2015 # # Author: # # John Burkardt # # Parameters: # # Output, real A(4,4), the matrix. # import numpy as np a = np.array ( [ \ [ 1.732050807568877, 0.0, \ 0.0, 0.0 ], \ [ -1.154700538379252, 1.290994448735805, \ 0.0, 0.0 ], \ [ 0.0, -1.549193338482967, \ 0.774596669241483, 0.0 ], \ [ 1.154700538379252, 1.032795558988645, \ -0.516397779494321, 0.577350269189626 ] ] ) return a def kershaw_test ( ): #*****************************************************************************80 # ## KERSHAW_TEST tests KERSHAW. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 February 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'KERSHAW_TEST' print ' KERSHAW computes the KERSHAW matrix.' n = 4 a = kershaw ( ) r8mat_print ( n, n, a, ' KERSHAW matrix:' ) print '' print 'KERSHAW_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) kershaw_test ( ) kershaw_condition_test ( ) kershaw_determinant_test ( ) timestamp ( )