#! /usr/bin/env python # def kershawtri ( n, x ): #*****************************************************************************80 # ## KERSHAWTRI returns the KERSHAWTRI matrix. # # Discussion: # # A(I,I) = X(I) for I <= (N+1)/2 # A(I,I) = X(N+1-I) for (N+1)/2 < I # A(I,J) = 1 for I = J + 1 or I = J - 1. # A(I,J) = 0 otherwise. # # Example: # # N = 5, # X = ( 10, 20, 30 ) # A = # 10 1 0 0 0 # 1 20 1 0 0 # 0 1 30 1 0 # 0 0 1 20 1 # 0 0 0 1 10 # # Properties: # # A is tridiagonal. # # A is symmetric. # # If the entries in X are integers, then det(A) is an integer. # # If det(A) is an integer, then det(A) * inv(A) is an integer matrix. # # A is persymmetric: A(I,J) = A(N+1-J,N+1-I). # # A is centrosymmetric: A(I,J) = A(N+1-I,N+1-J). # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 February 2015 # # Author: # # John Burkardt # # Reference: # # P Schlegel, # The Explicit Inverse of a Tridiagonal Matrix, # Mathematics of Computation, # Volume 24, Number 111, July 1970, page 665. # # Parameters: # # Input, integer N, the order of the matrix. # # Input, real X((N+1)/2), defines the diagonal of the matrix. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) nh = ( n // 2 ) for i in range ( 0, nh ): a[i,i] = x[i] a[n-1-i,n-1-i] = x[i] if ( ( n % 2 ) == 1 ): a[nh,nh] = x[nh] for i in range ( 0, n - 1 ): a[i,i+1] = 1.0 a[i+1,i] = 1.0 return a def kershawtri_determinant ( n, x ): #*****************************************************************************80 # ## KERSHAWTRI_DETERMINANT computes the determinant of the KERSHAWTRI matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Input, real X((N+1)/2), defines the diagonal of the matrix. # # Output, real VALUE, the determinant. # import numpy as np nh = ( n // 2 ) r = np.zeros ( n + 1 ) r[0] = 1.0 r[1] = - x[0] for i in range ( 3, n + 1 ): if ( i - 1 <= nh ): xim1 = x[i-2] else: xim1 = x[n+1-i] r[i-1] = - ( xim1 * r[i-2] + r[i-3] ) value = x[0] * r[n-1] + r[n-2] return value def kershawtri_determinant_test ( ): #*****************************************************************************80 # ## KERSHAWTRI_DETERMINANT_TEST tests KERSHAWTRI_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 February 2015 # # Author: # # John Burkardt # from kershawtri import kershawtri from r8vec_uniform_ab import r8vec_uniform_ab from r8mat_print import r8mat_print print '' print 'KERSHAWTRI_DETERMINANT_TEST' print ' KERSHAWTRI_DETERMINANT computes the KERSHAWTRI determinant.' n = 5 x_n = ( ( n + 1 ) // 2 ) r8_lo = -5.0 r8_hi = +5.0 seed = 123456789 x, seed = r8vec_uniform_ab ( x_n, r8_lo, r8_hi, seed ) a = kershawtri ( n, x ) m = n r8mat_print ( m, n, a, ' KERSHAWTRI matrix:' ) value = kershawtri_determinant ( n, x ) print '' print ' Value = %g' % ( value ) print '' print 'KERSHAWTRI_DETERMINANT_TEST' print ' Normal end of execution.' return def kershawtri_inverse ( n, x ): #*****************************************************************************80 # ## KERSHAWTRI_INVERSE returns the inverse of the KERSHAWTRI matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 27 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Input, real X((N+1)/2), defines the diagonal of the matrix. # # Output, real A(N,N), the matrix. # import numpy as np nh = ( n // 2 ) r = np.zeros ( n + 1 ) r[0] = 1.0 r[1] = - x[0] for i in range ( 2, n ): if ( i <= nh ): xim1 = x[i-1] else: xim1 = x[n-i] r[i] = - ( xim1 * r[i-1] + r[i-2] ) r[n] = x[0] * r[n-1] + r[n-2] a = np.zeros ( ( n, n ) ) for i in range ( 0, n ): for j in range ( 0, i ): a[i,j] = r[j] * r[n-1-i] / r[n] a[i,i] = r[i] * r[n-1-i] / r[n] for j in range ( i + 1, n ): a[i,j] = r[i] * r[n-1-j] / r[n] return a def kershawtri_test ( ): #*****************************************************************************80 # ## KERSHAWTRI_TEST tests KERSHAWTRI. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 February 2015 # # Author: # # John Burkardt # from r8vec_uniform_ab import r8vec_uniform_ab from r8mat_print import r8mat_print print '' print 'KERSHAWTRI_TEST' print ' KERSHAWTRI computes the KERSHAWTRI matrix.' n = 5 x_n = ( ( n + 1 ) // 2 ) x_lo = -5.0 x_hi = +5.0 seed = 123456789 x, seed = r8vec_uniform_ab ( x_n, x_lo, x_hi, seed ) a = kershawtri ( n, x ) m = n r8mat_print ( m, n, a, ' KERSHAWTRI matrix:' ) print '' print 'KERSHAWTRI_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) kershawtri_test ( ) timestamp ( )