#! /usr/bin/env python # def laguerre ( n ): #*****************************************************************************80 # ## LAGUERRE returns the LAGUERRE matrix. # # Example: # # N = 8 # # 1 . . . . . . . # 1 -1 . . . . . . # 2 -4 1 . . . . . / 2 # 6 -18 9 -1 . . . . / 6 # 24 -96 72 -16 1 . . . / 24 # 120 -600 600 -200 25 -1 . . / 120 # 720 -4320 5400 -2400 450 -36 1 . / 720 # 5040 -35280 52920 -29400 7350 -882 49 -1 / 5040 # # Properties: # # A is generally not symmetric: A' /= A. # # A is lower triangular. # # The columns of A alternate in sign. # # A(I,1) = 1 # A(I,I) = (-1)^(I-1) / (I-1)!. # # LAMBDA(I) = (-1)^(I-1) / (I-1)!. # # det ( A ) = product ( 1 <= I <= N ) (-1)^(I-1) / (I-1)! # # The I-th row contains the coefficients of the Laguerre # polynomial of degree I-1. # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 23 October 2007 # # Author: # # John Burkardt # # Reference: # # Milton Abramowitz, Irene Stegun, # Handbook of Mathematical Functions, # US Department of Commerce, 1964. # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) a[0,0] = 1.0 if ( 1 < n ): a[1,0] = 1.0 a[1,1] = -1.0 if ( 2 < n ): for i in range ( 3, n + 1 ): for j in range ( 0, n ): if ( j == 0 ): a[i-1,j] = ( float ( 2 * i - 3 ) * a[i-2,j] \ + float ( - i + 2 ) * a[i-3,j] ) \ / float ( i - 1 ) else: a[i-1,j] = ( float ( 2 * i - 3 ) * a[i-2,j] \ - float ( 1 ) * a[i-2,j-1] \ + float ( - i + 2 ) * a[i-3,j] ) \ / float ( i - 1 ) return a def laguerre_determinant ( n ): #*****************************************************************************80 # ## LAGUERRE_DETERMINANT computes the determinant of the LAGUERRE matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 February 2015 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of the matrix. # # Output, real VALUE, the determinant. # from r8_factorial import r8_factorial value = 1.0 p = + 1.0 for i in range ( 0, n ): value = value * p / r8_factorial ( i ) p = - p return value def laguerre_determinant_test ( ): #*****************************************************************************80 # ## LAGUERRE_DETERMINANT_TEST tests LAGUERRE_DETERMINANT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 February 2015 # # Author: # # John Burkardt # from laguerre import laguerre from r8mat_print import r8mat_print print '' print 'LAGUERRE_DETERMINANT_TEST' print ' LAGUERRE_DETERMINANT computes the LAGUERRE determinant.' m = 5 n = m a = laguerre ( n ) r8mat_print ( m, n, a, ' LAGUERRE matrix:' ) value = laguerre_determinant ( n ) print ' Value = %g' % ( value ) print '' print 'LAGUERRE_DETERMINANT_TEST' print ' Normal end of execution.' return def laguerre_inverse ( n ): #*****************************************************************************80 # ## LAGUERRE_INVERSE returns the inverse of the LAGUERRE matrix. # # Example: # # N = 9 # # 1 . . . . . . . . # 1 -1 . . . . . . . # 2 -4 2 . . . . . . # 6 -18 18 -6 . . . . . # 24 -96 144 -96 24 . . . . # 120 -600 1200 -1200 600 -120 . . . # 720 -4320 10800 -14400 10800 -4320 720 . . # 5040 -35280 105840 -176400 176400 -105840 35280 -5040 . # 40320 -322560 1128960 -2257920 2822400 -2257920 1128960 -322560 40320 # # Properties: # # A is generally not symmetric: A' /= A. # # A is lower triangular. # # The columns of A alternate in sign. # # A(I,1) = (I-1)! # A(I,I) = (I-1)! * ( -1 ) ^ (N+1) # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 14 October 2007 # # Author: # # John Burkardt # # Parameters: # # Input, integer N, the order of A. # # Output, real A(N,N), the matrix. # import numpy as np a = np.zeros ( ( n, n ) ) a[0,0] = 1.0 if ( 1 < n ): a[1,0] = 1.0 a[1,1] = -1.0 if ( 2 < n ): for i in range ( 2, n ): for j in range ( 0, n ): if ( j == 0 ): a[i,j] = float ( i ) * ( a[i-1,j] ) else: a[i,j] = float ( i ) * ( a[i-1,j] - a[i-1,j-1] ) return a def laguerre_test ( ): #*****************************************************************************80 # ## LAGUERRE_TEST tests LAGUERRE. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 17 February 2015 # # Author: # # John Burkardt # from r8mat_print import r8mat_print print '' print 'LAGUERRE_TEST' print ' LAGUERRE computes the LAGUERRE matrix.' m = 5 n = m a = laguerre ( n ) r8mat_print ( m, n, a, ' LAGUERRE matrix:' ) print '' print 'LAGUERRE_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) laguerre_test ( ) timestamp ( )