#! /usr/bin/env python # def lauchli ( alpha, m, n ): #*****************************************************************************80 # ## LAUCHLI returns the LAUCHLI matrix. # # Discussion: # # The Lauchli matrix is of order M by N, with M = N + 1. # # This matrix is a well-known example in least squares that indicates # the danger of forming the matrix of the normal equations, A' * A. # # A common value for ALPHA is sqrt(EPS) where EPS is the machine epsilon. # # Formula: # # if ( I = 1 ) # A(I,J) = 1 # else if ( I-1 = J ) # A(I,J) = ALPHA # else # A(I,J) = 0 # # Example: # # M = 5, N = 4 # ALPHA = 2 # # 1 1 1 1 # 2 0 0 0 # 0 2 0 0 # 0 0 2 0 # 0 0 0 2 # # Properties: # # The matrix is singular in a simple way. The first row is # equal to the sum of the other rows, divided by ALPHA. # # if ( ALPHA /= 0 ) # rank ( A ) = N - 1 # else if ( ALPHA == 0 ) # rank ( A ) = 1 # # The family of matrices is nested as a function of N. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 08 March 2015 # # Author: # # John Burkardt # # Reference: # # Peter Lauchli, # Jordan-Elimination und Ausgleichung nach kleinsten Quadraten, # (Jordan elimination and smoothing by least squares), # Numerische Mathematik, # Volume 3, Number 1, December 1961, pages 226-240. # # Parameters: # # Input, real ALPHA, the scalar defining the matrix. # # Input, integer M, N, the order of A. It should be the case # that M = N + 1. # # Output, real A(M,N), the matrix. # import numpy as np a = np.zeros ( ( m, n ) ) for i in range ( 0, m ): for j in range ( 0, n ): if ( i == 0 ): a[i,j] = 1.0 elif ( i == j + 1 ): a[i,j] = alpha return a def lauchli_null_left ( alpha, m, n ): #*****************************************************************************80 # ## LAUCHLI_NULL_LEFT returns a left null vector of the LAUCHLI matrix. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 08 March 2015 # # Author: # # John Burkardt # # Parameters: # # Input, real ALPHA, the scalar defining the matrix. # # Input, integer M, N, the order of A. # It should be the case that M = N + 1. # # Output, real X(M), the vector. # import numpy as np x = np.zeros ( m ) x[0] = - alpha for i in range ( 1, m ): x[i] = 1.0 return x def lauchli_null_left_test ( ): #*****************************************************************************80 # ## LAUCHLI_NULL_LEFT_TEST tests LAUCHLI_NULL_LEFT. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 08 March 2015 # # Author: # # John Burkardt # from r8_uniform_ab import r8_uniform_ab from r8mat_is_null_left import r8mat_is_null_left from r8mat_print import r8mat_print from r8vec_print import r8vec_print print '' print 'LAUCHLI_NULL_LEFT_TEST' print ' LAUCHLI_NULL_LEFT returns a left null vector of the LAUCHLI matrix.' print '' m = 5 n = m - 1 r8_lo = -5.0 r8_hi = +5.0 seed = 123456789 alpha, seed = r8_uniform_ab ( r8_lo, r8_hi, seed ) a = lauchli ( alpha, m, n ) r8mat_print ( m, n, a, ' LAUCHLI matrix A:' ) x = lauchli_null_left ( alpha, m, n ) r8vec_print ( m, x, ' Left null vector X:' ) value = r8mat_is_null_left ( m, n, a, x ) print '' print ' ||x\'*A||/||x|| = %g' % ( value ) print '' print 'LAUCHLI_NULL_LEFT_TEST' print ' Normal end of execution.' return def lauchli_test ( ): #*****************************************************************************80 # ## LAUCHLI_TEST tests LAUCHLI. # # Licensing: # # This code is distributed under the GNU LGPL license. # # Modified: # # 08 March 2015 # # Author: # # John Burkardt # from r8_uniform_01 import r8_uniform_01 from r8mat_print import r8mat_print print '' print 'LAUCHLI_TEST' print ' LAUCHLI computes the LAUCHLI matrix.' seed = 123456789 m = 5 n = m - 1 alpha, seed = r8_uniform_01 ( seed ) a = lauchli ( alpha, m, n ) r8mat_print ( m, n, a, ' LAUCHLI matrix:' ) print '' print 'LAUCHLI_TEST' print ' Normal end of execution.' return if ( __name__ == '__main__' ): from timestamp import timestamp timestamp ( ) lauchli_test ( ) lauchli_null_left_test ( ) timestamp ( )